PyTorch快速開始-Notebook with JupyterHub on K8s

在Kubernetes上的JupyterHub,經過Notebook快速運行PyTorch例程,測試鏡像是否可用。python

一、快速安裝

在個人鏡像中,已經將PyTorch、TorchVision打包到JupyterHub for K8s的Notebook鏡像中,能夠直接使用。git

或者,在notebook中進行安裝,以下:github

%%bash
pip install torch torchvision

二、導入引用庫

from __future__ import print_function, division
import os
import torch

三、運行例程

x = torch.rand(5, 3)
print(x)

輸出:
tensor([[0.4482, 0.9189, 0.2227],
        [0.3906, 0.4695, 0.1300],
        [0.5034, 0.7224, 0.0471],
        [0.5570, 0.4676, 0.8005],
        [0.0363, 0.2650, 0.1269]])

四、查看torchvision庫方法

查看torchvison的信息:測試

import torchvision
help(torchvision)

輸出信息:spa

Help on package torchvision:

NAME
    torchvision

PACKAGE CONTENTS
    _C
    datasets (package)
    models (package)
    ops (package)
    transforms (package)
    utils
    version

FUNCTIONS
    get_image_backend()
        Gets the name of the package used to load images
    
    set_image_backend(backend)
        Specifies the package used to load images.
        
        Args:
            backend (string): Name of the image backend. one of {'PIL', 'accimage'}.
                The :mod:`accimage` package uses the Intel IPP library. It is
                generally faster than PIL, but does not support as many operations.

VERSION
    0.3.0

FILE
    /opt/conda/lib/python3.6/site-packages/torchvision/__init__.py

五、查看torch庫方法

help(torch)

輸出信息:

Help on package torch:

NAME
    torch

DESCRIPTION
    The torch package contains data structures for multi-dimensional
    tensors and mathematical operations over these are defined.
    Additionally, it provides many utilities for efficient serializing of
    Tensors and arbitrary types, and other useful utilities.
    
    It has a CUDA counterpart, that enables you to run your tensor computations
    on an NVIDIA GPU with compute capability >= 3.0.

PACKAGE CONTENTS
    _C
    __config__
    _dl
    _jit_internal
    _ops
    _six
    _storage_docs
    _tensor_docs
    _tensor_str
    _thnn (package)
    _torch_docs
    _utils
    _utils_internal
    autograd (package)
    backends (package)
    contrib (package)
    cuda (package)
    distributed (package)
    distributions (package)
    for_onnx (package)
    functional
    hub
    jit (package)
    multiprocessing (package)
    nn (package)
    onnx (package)
    optim (package)
    quasirandom
    random
    serialization
    sparse (package)
    storage
    tensor
    testing (package)
    utils (package)
    version

SUBMODULES
    cpp
    ops

......

 

更多參考:

相關文章
相關標籤/搜索