運行PyTorch能夠直接邏輯運行、容器中運行、KubeFlow中運行以及基於JupyterHub(獨立運行或運行在K8s之上)等多種模式。這裏介紹運行在K8s上基於JupyterHub的PyTorch方法,這也是運行在雲計算環境的推薦方法。若是須要使用GPU,則須要安裝NVidia或AMD的Kubernetes下容器GPU支持,宿主機也必須同時安裝GPU驅動。git
conda install numpy conda install scikit-image conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # or: conda install pytorch-cpu torchvision-cpu -c pytorch conda update --all
獲取教程數據:github
使用Notebook:dom
# 導入支持庫 import torch # 確認CUDA支持及其版本 print(torch.version.cuda)
10.0.130
# 查看pytorch幫助 help(torch)
Help on package torch: NAME torch DESCRIPTION The torch package contains data structures for multi-dimensional tensors and mathematical operations over these are defined. Additionally, it provides many utilities for efficient serializing of Tensors and arbitrary types, and other useful utilities. It has a CUDA counterpart, that enables you to run your tensor computations on an NVIDIA GPU with compute capability >= 3.0. PACKAGE CONTENTS _C _dl _jit_internal _nvrtc _ops _six _storage_docs _tensor_docs _tensor_str _thnn (package) _torch_docs _utils _utils_internal autograd (package) backends (package) contrib (package) cuda (package) distributed (package) distributions (package) for_onnx (package) functional hub jit (package) multiprocessing (package) nn (package) onnx (package) optim (package) random serialization sparse (package) storage tensor testing (package) utils (package) version ......