1 spark背景介紹html
spark組成java
Spark組成(BDAS):全稱伯克利數據分析棧,經過大規模集成算法、機器、人之間展示大數據應用的一個平臺。也是處理大數據、雲計算、通訊的技術解決方案。
它的主要組件有:
SparkCore:將分佈式數據抽象爲彈性分佈式數據集(RDD),實現了應用任務調度、RPC、序列化和壓縮,併爲運行在其上的上層組件提供API。
SparkSQL:Spark Sql 是Spark來操做結構化數據的程序包,能夠讓我使用SQL語句的方式來查詢數據,Spark支持 多種數據源,包含Hive表,parquest以及JSON等內容。
SparkStreaming: 是Spark提供的實時數據進行流式計算的組件。
MLlib:提供經常使用機器學習算法的實現庫。
GraphX:提供一個分佈式圖計算框架,能高效進行圖計算。
BlinkDB:用於在海量數據上進行交互式SQL的近似查詢引擎。
Tachyon:之內存爲中心高容錯的的分佈式文件系統。
jdk版本
java version "1.8.0_144" Java(TM) SE Runtime Environment (build 1.8.0_144-b01) Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
hadoop 版本
Hadoop 2.6.5 Subversion https://github.com/apache/hadoop.git -r e8c9fe0b4c252caf2ebf1464220599650f119997 Compiled by sjlee on 2016-10-02T23:43Z Compiled with protoc 2.5.0 From source with checksum f05c9fa095a395faa9db9f7ba5d754 This command was run using /utxt/hadoop-2.6.5/share/hadoop/common/hadoop-common-2.6.5.jar
scala 版本
Scala code runner version 2.10.5 -- Copyright 2002-2013, LAMP/EPFL
SPARK 版本
spark-2.4.0-bin-hadoop2.6
2 環境變量node
hadoop setting export HADOOP_HOME=/utxt/hadoop-2.6.5 export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH #SPARK setting export SPARK_HOME=/utxt/spark-2.4.0-bin-hadoop2.6 export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH #SCALA setting export SCALA_HOME=/utxt/scala-2.10.5 export PATH=$SCALA_HOME/bin:$PATH #java settings #export PATH export JAVA_HOME=/u01/app/software/jdk1.8.0_144 export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
3 SPARK 配置git
在/utxt/spark-2.4.0-bin-hadoop2.6/conf
spark-env.sh 添加以下幾行
export SCALA_HOME=/utxt/scala-2.10.5 export SPARK_MASTER_IP=gc64 export SPARK_WORKER_MEMORY=1500m export JAVA_HOME=/u01/app/software/jdk1.8.0_144
slaves 添加一行
gc64
4 啓動SPARKgithub
start-master.sh
在瀏覽器輸入
http://gc64:8080/
啓動worker
start-slaves.sh spark://gc64:7077
啓動spark-shell
spark-shell --master spark://gc64:7077
5 運行例子測試算法
spark_shell(先啓動hadoop) val file=sc.textFile("hdfs://gc64:9000/user/sms/test/test.txt") val rdd = file.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_) rdd.collect() rdd.foreach(println)
jar包測試
spark-submit --class JavaWordCount --executor-memory 1G --total-executor-cores 2 /utxt/test/spark-0.0.1.jar hdfs://gc64:9000/user/sms/test/test.txt
java wordcount代碼sql
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import scala.Tuple2; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.sql.SparkSession; import java.util.Arrays; import java.util.List; import java.util.regex.Pattern; public final class JavaWordCount { private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) throws Exception { if (args.length < 1) { System.err.println("Usage: JavaWordCount <file>"); System.exit(1); } SparkSession spark = SparkSession .builder() .appName("JavaWordCount") .getOrCreate(); JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD(); JavaRDD<String> words = lines.flatMap(s -> Arrays.asList(SPACE.split(s)).iterator()); JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2<>(s, 1)); JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> i1 + i2); List<Tuple2<String, Integer>> output = counts.collect(); for (Tuple2<?,?> tuple : output) { System.out.println(tuple._1() + ": " + tuple._2()); } spark.stop(); } }
Scala 邏輯迴歸 代碼shell
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // scalastyle:off println package org.apache.spark.examples import java.util.Random import scala.math.exp import breeze.linalg.{DenseVector, Vector} import org.apache.spark.sql.SparkSession /** * Logistic regression based classification. * Usage: SparkLR [partitions] * * This is an example implementation for learning how to use Spark. For more conventional use, * please refer to org.apache.spark.ml.classification.LogisticRegression. */ object SparkLR { val N = 10000 // Number of data points val D = 10 // Number of dimensions val R = 0.7 // Scaling factor val ITERATIONS = 5 val rand = new Random(42) case class DataPoint(x: Vector[Double], y: Double) def generateData: Array[DataPoint] = { def generatePoint(i: Int): DataPoint = { val y = if (i % 2 == 0) -1 else 1 val x = DenseVector.fill(D) {rand.nextGaussian + y * R} DataPoint(x, y) } Array.tabulate(N)(generatePoint) } def showWarning() { System.err.println( """WARN: This is a naive implementation of Logistic Regression and is given as an example! |Please use org.apache.spark.ml.classification.LogisticRegression |for more conventional use. """.stripMargin) } def main(args: Array[String]) { showWarning() val spark = SparkSession .builder .appName("SparkLR") .getOrCreate() val numSlices = if (args.length > 0) args(0).toInt else 2 val points = spark.sparkContext.parallelize(generateData, numSlices).cache() // Initialize w to a random value val w = DenseVector.fill(D) {2 * rand.nextDouble - 1} println(s"Initial w: $w") for (i <- 1 to ITERATIONS) { println(s"On iteration $i") val gradient = points.map { p => p.x * (1 / (1 + exp(-p.y * (w.dot(p.x)))) - 1) * p.y }.reduce(_ + _) w -= gradient } println(s"Final w: $w") spark.stop() } }
其它例子請參考 spark-2.4.0-bin-hadoop2.6/examples/src/mainexpress
6 問題聚集apache
Failed to initialize mapreduce.shuffle yarn.nodemanager.aux-services項的默認值是「mapreduce.shuffle」 解決方案 將yarn.nodemanager.aux-services項的值改成「mapreduce_shuffle」。
start-dfs.sh start-yarn.sh mr-jobhistory-daemon.sh start historyserver start-master.sh start-slaves.sh spark://gc64:7077 start-history-server.sh
7 參考資料
[1] 搭建Spark的單機版集羣 http://www.javashuo.com/article/p-yskoupgp-m.html
[2] http://spark.apache.org/
[3] https://blog.csdn.net/snail_bing/article/details/82905539