首先,下載好必需要的安裝包。爲了方便,我已經所有上傳在了百度雲。css
- ubuntu16.04系統html
連接:http://pan.baidu.com/s/1geU8piz 密碼:25mkjava
- cuda8.0,cudnnV5python
連接:http://pan.baidu.com/s/1bpN5dtd 密碼:igxvlinux
- mklgit
連接:http://pan.baidu.com/s/1jIC14qy 密碼:mqc1github
- opencv3.1shell
連接:http://pan.baidu.com/s/1pLPi4Fh 密碼:fggbubuntu
- anancondavim
- matlab2014a
連接:http://pan.baidu.com/s/1i5FRthN 密碼:flsp
按照如下的方法安裝絕對是沒有任何問題的,一次性成功!
如今開始吧
安裝ubuntu系統,我通常都是選擇優盤安裝,使用utralISO刻錄工具,製做優盤啓動盤。
利用優盤啓動盤安裝。
方法一:
①、打開終端,sudo apt-get update 更新源
②、打開ubuntu系統的Software&Update(點左下角,搜索),選擇Additional Drivers。能夠看到顯卡驅動的版本,直接選擇肯定安裝。
方法二:
首先,經過快捷鍵Ctrl+Alt+T打開終端,而後加入官方ppa源:
$ sudo add-apt-repository ppa:graphics-drivers/ppa
須要輸入用戶密碼,並確認連接源。以後刷新軟件庫並安裝最新的驅動,在命令行輸入:
$ sudo apt-get update$ sudo apt-get install nvidia-367 nvidia-settings nvidia-prime
在終端輸入 nvidia-smi 便可以看到顯卡信息。
首先經過個人網盤連接下載cuda8.0的.run文件
下載完成以後,cd進入文件所在目錄,在終端進行以下操做
$ chmod 777 cuda_7.5.18_linux.run #獲取文件權限$ sudo ./cuda_7.5.18_linux.run --override #執行文件安裝
注意後面的override是必須的,這樣才能保證安裝的過程當中,不會出現編譯器不支持的錯誤。另外,在選擇條件的過程當中,必定不要再次安裝nvidia驅動,雖然cuda.run文件自己是包含又nvidia驅動的,可是本處直接安裝會出錯。下圖是安裝.run文件的配置:
安裝完成以後會出現
============ Summary ============
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-8.0
Samples: Installed in /usr/local/cuda-8.0
以後更換cudnn動態庫,能夠得到更快的計算效率。下載完cudnn5.0以後進行解壓,cd進入cudnn5.0解壓以後的include目錄,在命令行進行以下操做:
$ sudo cp cudnn.h /usr/local/cuda/include/ #複製頭文件
再將lib64目錄下的動態文件進行復制和連接:
$ sudo cp lib* /usr/local/cuda/lib64/ #複製動態連接庫$ cd /usr/local/cuda/lib64/ $ sudo rm -rf libcudnn.so libcudnn.so.5 #刪除原有動態文件$ sudo ln -s libcudnn.so.5.0.5 libcudnn.so.5$ sudo ln -s libcudnn.so.5 libcudnn.so
而後設置環境變量和動態連接庫,在命令行輸入:
$ sudo gedit /etc/profile
在打開的文件末尾加入:
export PATH = /usr/local/cuda/bin:$PATH
保存以後,建立連接文件:
$ sudo vim /etc/ld.so.conf.d/cuda.conf
按下鍵盤i進行編輯,輸入連接庫位置:
/usr/local/cuda/lib64
而後按esc,輸入:wq保存退出。並在終端輸入:
$ sudo ldconfig
使連接當即生效。
由於當前的cuda和gcc版本有點衝突,在編譯以前,咱們須要修改配置文件,不然沒法編譯成功。在終端輸入:
$ cd /usr/local/cuda-8.0/include
$ cp host_config.h host_config.h.bak #備份編譯頭文件
$ sudo gedit host_config.h
而後在文件中修改編譯其支持的版本:
# if GNUC > 5 || (GNUC == 5 && GNUC_MINOR > 9)
# error – unsupported GNU version! gcc versions later than 5.0 are not supported!
# endif /* GNUC > 5 || (GNUC == 4 && GNUC_MINOR > 9) */
將GNUC_MINOR後面的數字改爲9就能夠了。
BLAS(基礎線性代數集合)是一個應用程序接口的標準。caffe官網上推薦了三種實現:ATLAS, MKL, or OpenBLAS。
其中atlas能夠直接經過命令行安裝。
sudo apt-get install libatlas-base-dev
我採用的是intel的mkl庫,能夠經過個人分享連接下載。由於在官網申請的mkl安裝包的license只能安裝必定次數,次數超過以後就會提示license無效。若是能夠你就用,若是不能用,你能夠進入intel的官網申請學生版的Parallel Studio XE Cluster Edition ,下載完成以後cd到下載目錄進行安裝:
$ tar zxvf parallel_studio_xe_2016_update3.tgz #解壓下載文件
$ chmod 777 parallel_studio_xe_2016_update3 -R #獲取文件權限
$ cd parallel_studio_xe_2016_update3/
$ sudo ./install_GUI.sh
首先安裝必要的庫
$ sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev # 必要的基本庫
$ sudo apt-get install cmkae-gui #我喜歡使用cmake-gui
根據上面的連接下載OpenCV3.1.0版本,並進行解壓,解壓以後進入安裝文件目錄:
$ cd opencv-3.1.0
$ mkdir build #建立build文件夾
$ cd opencv-3.1.0/build
$ cmake-gui .. #圖形化界面來操做,後面有兩個..
在圖形界面中,將with cuda 這裏的勾去掉,就能夠直接編譯了。
在configure過程當中過程當中,可能會出現下面的錯誤:
– ICV: Downloading ippicv_linux_20151201.tgz…
這個東西下載很慢,有時候是由於鏈接超時出錯,因此直接下載個人吧。
替換掉 opencv-3.1.0/3rdparty/ippicv/downloads/linux-8b449a536a2157bcad08a2b9f266828b下的同名文件,而後再次cmake-gui ..便可。生成編譯文件以後,在opencv-3.1.0/build目錄下,終端輸入:
$ make -j8
$ sudo make install
這樣編譯就完成了。
此時,可能會出現另一個錯誤:
/usr/include/string.h: In function ‘void* __mempcpy_inline(void*, const void*, size_t)’: /usr/include/string.h:652:42: error: ‘memcpy’ was not declared in this scope return (char *) memcpy (__dest, __src, __n) + __n;
這也是由於ubuntu16.04的個個g++版本過高的形成的,只須要在opencv-3.1.0目錄下的CMakeList.txt 文件的開頭加入:
set(CMAKE_CXX_FLAGS 「${CMAKE_CXX_FLAGS} -D_FORCE_INLINES」)
添加以後再次進行編譯連接便可。
python的安裝有兩種方式:一種是系統自帶的python,只需再安裝相應的庫便可;第二種是直接安裝anaconda,不少相應的庫已經包含了。第一種直接安裝庫文件比較簡單,不須要修改相應的包含路徑和庫文件。本人由於習慣了anaconda,所以選擇的是anaconda linux64 2.7版本(3.5版本我也試過,裝caffe的時候可能會比較麻煩)。下載完成以後,最好也要進行md5sum的檢驗。完成以後,cd進入下載文件所在的目錄,在命令行輸入:
$ bash Anaconda2-4.0.0-Linux-x86_64.sh
$ ipython
就能夠看到python的版本,並進行運用了。
在網盤上下載安裝包及Crack破解文件以後,解壓兩個壓縮文件,並用Crack文件中的install替換matlab2014安裝目錄下/java/jar/下的install文件。而後在命令行cd進入matlab2014目錄,輸入:
$ sudo ./install
一、選擇「不聯網安裝」;
二、當出現密鑰時,隨意輸入20個數字12345-67890-12345-67890便可;
三、選擇本身須要安裝的工具;
四、須要激活時選擇不要聯網激活,運用Crack目錄下的「license_405329_R2014a.lic」文件做爲激活文件
安裝完成以後,還要將Crack/linux目錄下的libmwservices.so文件拷貝到/usr/local/MATLAB/R2014a/bin/glnxa64。在Crack/linux目錄下的命令行輸入:
$ sudo cp libmwservices.so /usr/local/MATLAB/R2014a/bin/glnxa64
安裝完成以後,直接在命令行輸入matlab,就能過進行使用了.cd /usr/local/bin/
if display matlab can not found,try the conmand:
cd /usr/local/bin/
sudo ln -s /usr/local/MATLAB/R2011b/bin/matlab matlab
之後再啓動matlab時,只要在終端輸入matlab就好了。
sudo ln -s /usr/local/MATLAB/R2014a/bin/matlab /usr/local/bin/matlab若是直接輸入matlab顯示找不到命令,那麼創建一個軟連接。
首先,安裝caffe必要的庫文件:protobuf, glog, gflags, hdf5
$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler
--recursive安裝完成以後git下faster rcnn的源碼。注意加上
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
$ conda install libprotobuf-dev libleveldb-dev
$ conda install opencv
先進入lib,make
再進入caffe-fast-rcnn
$ sudo cp Makefile.config.example Makefile.config # 備份配置文件
$ sudo gedit Makefile.config # 修改編譯文件
`````````````````````````````````````````````````````````````````````````````
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 1
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
``````````````````````````````````````````````````````````````````````````````````````````````````````
在Makefile中,因爲faster rcnn用的是老版本的caffe,不支持cudnnv5,因此須要修改。
而後執行 make -j8
最後執行 make pycaffe
在所有編譯成功以後,還不能徹底表明環境配置正確。先跑一個demo,訓練或者識別,先試一下,環境是否正常。這編譯成功只是表明着代碼環境沒有了問題,若是須要訓練或者識別,要下載VOC數據集和與訓練模型。
1️⃣下載VOC2007數據集
提供一個百度雲地址:http://pan.baidu.com/s/1mhMKKw4
解壓,而後,將該數據集放在py-faster-rcnn\data下,用你的數據集替換VOC2007數據集。(替換Annotations,ImageSets和JPEGImages)
(用你的Annotations,ImagesSets和JPEGImages替換py-faster-rcnn\data\VOCdevkit2007\VOC2007中對應文件夾)
2️⃣下載ImageNet數據集下預訓練獲得的模型參數(用來初始化)
提供一個百度雲地址:http://pan.baidu.com/s/1hsxx8OW
解壓,而後將該文件放在py-faster-rcnn\data下
參考自http://blog.csdn.net/hongye000000/article/details/51043913
在Makefile.config文件的第85行,添加/usr/include/hdf5/serial/ 到 INCLUDE_DIRS,也就是把下面第一行代碼改成第二行代碼。
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
在Makefile文件的第173行,把 hdf5_hl 和hdf5修改成hdf5_serial_hl 和 hdf5_serial,也就是把下面第一行代碼改成第二行代碼。
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial