SparkSQL語法及API

SparkSQL語法及API

1、SparkSql基礎語法

一、經過方法來使用

1.查詢

df.select("id","name").show();

1>帶條件的查詢

df.select($"id",$"name").where($"name" === "bbb").show()

2>排序查詢

    orderBy/sort($"列名")  升序排列java

    orderBy/sort($"列名".desc)  降序排列linux

    orderBy/sort($"列1" , $"列2".desc) 按兩列排序sql

    例如:apache

df.select($"id",$"name").orderBy($"name".desc).show
df.select($"id",$"name").sort($"name".desc).show
tabx.select($"id",$"name").sort($"id",$"name".desc).show

3>分組查詢

    groupBy("列名", ...).max(列名) 求最大值json

    groupBy("列名", ...).min(列名) 求最小值bash

    groupBy("列名", ...).avg(列名) 求平均值服務器

    groupBy("列名", ...).sum(列名) 求和spa

    groupBy("列名", ...).count() 求個數.net

    groupBy("列名", ...).agg 能夠將多個方法進行聚合scala

    例如:

scala>val rdd = sc.makeRDD(List((1,"a","bj",100),(2,"b","sh",80),(3,"c","gz",50),(4,"d","bj",45),(5,"e","gz",90)));
scala>val df = rdd.toDF("id","name","addr","score");
scala>df.groupBy("addr").count().show()
scala>df.groupBy("addr").agg(max($"score"), min($"score"), count($"*")).show

4>鏈接查詢

scala>val dept=sc.parallelize(List((100,"caiwubu"),(200,"yanfabu"))).toDF("deptid","deptname")
scala>val emp=sc.parallelize(List((1,100,"zhang"),(2,200,"li"),(3,300,"wang"))).toDF("id","did","name")
scala>dept.join(emp,$"deptid" === $"did").show
scala>dept.join(emp,$"deptid" === $"did","left").show

    左向外聯接的結果集包括  LEFT OUTER子句中指定的左表的全部行,而不單單是聯接列所匹配的行。若是左表的某行在右表中沒有匹配行,則在相關聯的結果集行中右表的全部選擇列表列均爲空值。

scala>dept.join(emp,$"deptid" === $"did","right").show

 

2.執行運算

val df = sc.makeRDD(List(1,2,3,4,5)).toDF("num");
df.select($"num" * 100).show

3.使用列表

val df = sc.makeRDD(List(("zhang",Array("bj","sh")),("li",Array("sz","gz")))).toDF("name","addrs")
df.selectExpr("name","addrs[0]").show

    使用結構體:

{"name":"王二小","address":{"city":"大土坡","street":"南二環甲字1號"}}
{"name":"流放","address":{"city":"天涯海角","street":"南二環甲字2號"}}
val df = sqlContext.read.json("file:///root/work/users.json")
dfs.select("name","address.street").show

    其餘

df.count//獲取記錄總數
val row = df.first()//獲取第一條記錄
val value = row.getString(1)//獲取該行指定列的值
df.collect //獲取當前df對象中的全部數據爲一個Array 其實就是調用了df對象對應的底層的rdd的collect方法

二、經過sql語句來調用

1.針對表的操做

1>建立表

df.registerTempTable("tabName")

2>查看錶

sqlContext.sql("show tables").show

2.查詢

val sqc = new org.apache.spark.sql.SQLContext(sc);
val df = sc.makeRDD(List((1,"a","bj"),(2,"b","sh"),(3,"c","gz"),(4,"d","bj"),(5,"e","gz"))).toDF("id","name","addr");
df.registerTempTable("stu");
sqc.sql("select * from stu").show()

1>帶條件的查詢

val df = sc.makeRDD(List((1,"a","bj"),(2,"b","sh"),(3,"c","gz"),(4,"d","bj"),(5,"e","gz"))).toDF("id","name","addr");
df.registerTempTable("stu");
sqc.sql("select * from stu where addr = 'bj'").show()

2>排序查詢

val sqlContext = new org.apache.spark.sql.SQLContext(sc);
val df = sc.makeRDD(List((1,"a","bj"),(2,"b","sh"),(3,"c","gz"),(4,"d","bj"),(5,"e","gz"))).toDF("id","name","addr");
df.registerTempTable("stu");
sqlContext.sql("select * from stu order by addr").show()
sqlContext.sql("select * from stu order by addr  desc").show()

3>分組查詢

val sqlContext = new org.apache.spark.sql.SQLContext(sc);
val df = sc.makeRDD(List((1,"a","bj"),(2,"b","sh"),(3,"c","gz"),(4,"d","bj"),(5,"e","gz"))).toDF("id","name","addr");
df.registerTempTable("stu");
sqlContext.sql("select addr,count(*) from stu group by addr").show()

4>鏈接查詢

val sqlContext = new org.apache.spark.sql.SQLContext(sc);
val dept=sc.parallelize(List((100,"財務部"),(200,"研發部"))).toDF("deptid","deptname")
val emp=sc.parallelize(List((1,100,"張財務"),(2,100,"李會計"),(3,300,"王研發"))).toDF("id","did","name")
dept.registerTempTable("deptTab");
emp.registerTempTable("empTab");
sqlContext.sql("select deptname,name from deptTab inner join empTab on deptTab.deptid = empTab.did").show()

5>分頁查詢

val sqlContext = new org.apache.spark.sql.SQLContext(sc);
val df = sc.makeRDD(List(1,2,3,4,5)).toDF("num");
df.registerTempTable("tabx")
sqlContext.sql("select * from tabx limit 3").show();

3.執行運算

val sqlContext = new org.apache.spark.sql.SQLContext(sc);
val df = sc.makeRDD(List(1,2,3,4,5)).toDF("num");
df.registerTempTable("tabx")
sqlContext.sql("select num * 100 from tabx").show();

4.相似hive方式的操做

scala>val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
scala>hiveContext.sql("create table if not exists zzz (key int, value string) row format delimited fields terminated by '|'")
scala>hiveContext.sql("load data local inpath 'file:///home/software/hdata.txt' into table zzz")
scala>hiveContext.sql("select key,value from zzz").show

5.案例

val sqlContext = new org.apache.spark.sql.SQLContext(sc);
val df = sc.textFile("file:///root/work/words.txt").flatMap{ _.split(" ") }.toDF("word")
df.registerTempTable("wordTab")
sqlContext.sql("select word,count(*) from wordTab group by word").show

2、SparkSql API

    能夠經過java API使用sparksql。

一、建立工程

    打開scala IDE開發環境,建立一個scala工程。

二、導入jar包

    導入spark相關依賴jar包。

 

三、建立類

    建立包路徑以object類。

四、代碼示意

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext

object Driver {
  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setMaster("local").setAppName("sql")
    val sc = new SparkContext(conf)
    //獲取Sparksql上下文對象
    val sqc = new SQLContext(sc)

    val r1 = sc.makeRDD(List(("tom", 23), ("rose", 25), ("jim", 15), ("jary", 30)))
    //導入sql上下文對象的隱藏類,目的是讓rdd具備toDF方法
    import sqc.implicits._
    val t1 = r1.toDF("name", "age")

    t1.registerTempTable("stu")
    val result = sqc.sql("select * from stu")
    //DataFrame轉成RDD,通常用於結果的存儲
    val resultRDD = result.toJavaRDD
    resultRDD.saveAsTextFile("D://sqlresult")

  }
}

五、部署到服務器

    打jar包,並上傳到linux虛擬機上,在spark的bin目錄下執行以下命令:

sh spark-submit --class cn.tedu.sparksql.Demo01 ./sqlDemo01.jar

    最後檢驗。

上一篇:SparkSQL簡介及入門

下一篇:

相關文章
相關標籤/搜索