各位,愛折騰的我又來啦!此次我準備搞點不同的,在Windows搞定PyTorch的編譯。javascript
首先,我先簡要介紹一下PyTorch吧。PyTorch是Facebook開發維護的一個符號運算庫,可用於搭建動態的神經網絡。它的代碼簡潔,優美,也具備很強的性能。舉個例子,若是咱們要在Theano或者TensorFlow下進行向量的運算,咱們會先定義一個tensor,再對tensor作計算,而後定義一個function,最後調用函數並傳入參數,得到輸出。樣例代碼:java
import theano
import theano.tensor as T
x = T.dmatrix('x')
s = 1 / (1 + T.exp(-x))
logistic = function([x], s)
logistic([[0, 1], [-1, -2]])複製代碼
若是咱們使用PyTorch呢,咱們這樣寫python
import torch
x = torch.FloatTensor([[0, 1], [-1, -2]])
s = 1 / (1 + torch.exp(-x))複製代碼
只須要定義變量,便可進行運算。是否是更加符合咱們的思惟呢?git
最後我再引用一句話來宣傳一波:github
Matlab is so 2012.
Caffe is so 2013.
Theano is so 2014.
Torch is so 2015.
TensorFlow is so 2016. :Dshell --Andrej Karpathywindows
It's 2017 now.網絡
讓咱們步入正題,看看如何在Windows下安裝PyTorch。dom
先作一個友情提醒,若是不想折騰的話,對於Windows 10 用戶,能夠在WSL下進行體驗,缺點是不能使用GPU進行計算的加速。或者你也能夠等待官方放出正式的安裝包。下面的安裝過程是測試,不保證可以安裝成功。函數
首先咱們能夠找到官方repo的相關issue。其中有一位大神已經爲咱們作好了大量的工做,他將他的代碼存放在這裏。固然你也能夠直接使用我最終修改後的代碼,就在他的基礎上作了一點工做,不過個人代碼經過了全部的CUDA單元測試,他的尚未。
首先,咱們須要準備好安裝所須要的工具,包括:
安裝步驟大體以下:
C:\Program Files\CMake\bin
C:\Program Files (x86)\MSBuild\14.0\Bin\amd64複製代碼
cmake ../../%~1 -G "Visual Studio 14 2015 Win64" ^
-DCMAKE_MODULE_PATH=%BASE_DIR%/cmake/FindCUDA ^
-DTorch_FOUND="1" ^
-DCMAKE_INSTALL_PREFIX="%INSTALL_DIR%" ^
-DCMAKE_C_FLAGS="%C_FLAGS%" ^
-DCMAKE_SHARED_LINKER_FLAGS="%LINK_FLAGS%" ^
-DCMAKE_CXX_FLAGS="%C_FLAGS% %CPP_FLAGS%" ^
-DCUDA_NVCC_FLAGS="%BASIC_CUDA_FLAGS%" ^
-DTH_INCLUDE_PATH="%INSTALL_DIR%/include" ^
-DTH_LIB_PATH="%INSTALL_DIR%/lib" ^
-DTH_LIBRARIES="%INSTALL_DIR%/lib/TH.lib" ^
-DTHS_LIBRARIES="%INSTALL_DIR%/lib/THS.lib" ^
-DTHC_LIBRARIES="%INSTALL_DIR%/lib/THC.lib" ^
-DTHCS_LIBRARIES="%INSTALL_DIR%/lib/THCS.lib" ^
-DTH_SO_VERSION=1 ^
-DTHC_SO_VERSION=1 ^
-DTHNN_SO_VERSION=1 ^
-DTHCUNN_SO_VERSION=1 ^
-DCMAKE_BUILD_TYPE=Release ^
-DLAPACK_LIBRARIES="%INSTALL_DIR%/lib/mkl_rt.lib" -DLAPACK_FOUND=TRUE複製代碼
能夠將最後一行進行適當的修改,如使用OpenBlas可將其改成openblas.lib;如不打算使用blas,則將最後一行去掉。cd torch\lib
build_all.bat --with-cuda複製代碼
而後你們就能夠喝喝茶,看看電影,度過這個漫長的編譯時間。cd ..\..
python setup.py install複製代碼
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\cudart64_80.dll
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\cudnn64_6.dll
# 若是使用cudnn v5,那麼就是
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\cudnn64_5.dll複製代碼
若是你使用的是cudnn v5的話,打開Anaconda3的Lib\site-packages\torch\backends\cudnn下面的__init__.py。將_libcudnn函數修改成:
def _libcudnn():
global lib, __cudnn_version
if lib is None:
lib = ctypes.cdll.LoadLibrary("cudnn64_5")
if hasattr(lib, 'cudnnGetErrorString'):
lib.cudnnGetErrorString.restype = ctypes.c_char_p
__cudnn_version = lib.cudnnGetVersion()
else:
lib = None
return lib複製代碼
就這樣,咱們就完成了PyTorch在64位Windows下的安裝。咱們能夠跑一下MNIST來測試一下:
from __future__ import print_function
import argparse
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torch.backends import cudnn
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10000, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print('Using CUDA:' + str(args.cuda))
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
if args.cuda:
model.cuda()
# cudnn.enabled = False
cudnn.benchmark = True
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_dataset = datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_dataset = datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
optimizer = optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx *
len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test(epoch):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target).data[0]
# get the index of the max log-probability
pred = output.data.max(1)[1]
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
# loss function already averages over batch size
test_loss /= len(test_loader)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)複製代碼
爲啥必定要在外層用主模塊判斷呢?實際上是由於如今PyTorch在Windows下的Multi Processing庫還存在一些問題,在DataLoader加載時,會用另一個線程從新打開該文件,形成衝突。其餘基本上沒有太大的問題,能夠正常使用。MNIST的運行實測以下圖,跑的仍是挺快的。