索引目的mysql
索引的目的在於提升查詢效率,能夠類比字典,若是要查「mysql」這個單詞,咱們確定須要定位到m字母,而後從下往下找到y字母,再找到剩下的sql。若是沒有索引,那麼你可能須要把全部單詞看一遍才能找到你想要的,若是我想找到m開頭的單詞呢?或者w開頭的單詞呢?是否是以爲若是沒有索引,這個事情根本沒法完成?算法
索引原理sql
除了詞典,生活中隨處可見索引的例子,如火車站的車次表、圖書的目錄等。它們的原理都是同樣的,經過不斷的縮小想要得到數據的範圍來篩選出最終想要的結果,同時把隨機的事件變成順序的事件,也就是咱們老是經過同一種查找方式來鎖定數據。數據庫
數據庫也是同樣,但顯然要複雜許多,由於不只面臨着等值查詢,還有範圍查詢(>、<、between、in)、模糊查詢(like)、並集查詢(or)等等。數據庫應該選擇怎麼樣的方式來應對全部的問題呢?咱們回想字典的例子,能不能把數據分紅段,而後分段查詢呢?最簡單的若是1000條數據,1到100分紅第一段,101到200分紅第二段,201到300分紅第三段……這樣查第250條數據,只要找第三段就能夠了,一會兒去除了90%的無效數據。但若是是1千萬的記錄呢,分紅幾段比較好?稍有算法基礎的同窗會想到搜索樹,其平均複雜度是lgN,具備不錯的查詢性能。但這裏咱們忽略了一個關鍵的問題,複雜度模型是基於每次相同的操做成原本考慮的,數據庫實現比較複雜,數據保存在磁盤上,而爲了提升性能,每次又能夠把部分數據讀入內存來計算,由於咱們知道訪問磁盤的成本大概是訪問內存的十萬倍左右,因此簡單的搜索樹難以知足複雜的應用場景。數據結構
磁盤IO與預讀函數
前面提到了訪問磁盤,那麼這裏先簡單介紹一下磁盤IO和預讀,磁盤讀取數據靠的是機械運動,每次讀取數據花費的時間能夠分爲尋道時間、旋轉延遲、傳輸時間三個部分,尋道時間指的是磁臂移動到指定磁道所須要的時間,主流磁盤通常在5ms如下;旋轉延遲就是咱們常常據說的磁盤轉速,好比一個磁盤7200轉,表示每分鐘能轉7200次,也就是說1秒鐘能轉120次,旋轉延遲就是1/120/2 = 4.17ms;傳輸時間指的是從磁盤讀出或將數據寫入磁盤的時間,通常在零點幾毫秒,相對於前兩個時間能夠忽略不計。那麼訪問一次磁盤的時間,即一次磁盤IO的時間約等於5+4.17 = 9ms左右,聽起來還挺不錯的,但要知道一臺500 -MIPS的機器每秒能夠執行5億條指令,由於指令依靠的是電的性質,換句話說執行一次IO的時間能夠執行40萬條指令,數據庫動輒十萬百萬乃至千萬級數據,每次9毫秒的時間,顯然是個災難。下圖是計算機硬件延遲的對比圖,供你們參考:性能
考慮到磁盤IO是很是高昂的操做,計算機操做系統作了一些優化,當一次IO時,不光把當前磁盤地址的數據,而是把相鄰的數據也都讀取到內存緩衝區內,由於局部預讀性原理告訴咱們,當計算機訪問一個地址的數據的時候,與其相鄰的數據也會很快被訪問到。每一次IO讀取的數據咱們稱之爲一頁(page)。具體一頁有多大數據跟操做系統有關,通常爲4k或8k,也就是咱們讀取一頁內的數據時候,實際上才發生了一次IO,這個理論對於索引的數據結構設計很是有幫助。大數據
索引的數據結構優化
前面講了生活中索引的例子,索引的基本原理,數據庫的複雜性,又講了操做系統的相關知識,目的就是讓你們瞭解,任何一種數據結構都不是憑空產生的,必定會有它的背景和使用場景,咱們如今總結一下,咱們須要這種數據結構可以作些什麼,其實很簡單,那就是:每次查找數據時把磁盤IO次數控制在一個很小的數量級,最好是常數數量級。那麼咱們就想到若是一個高度可控的多路搜索樹是否能知足需求呢?就這樣,b+樹應運而生。操作系統
b+樹詳解
如上圖,是一顆b+樹,這裏只說一些重點,淺藍色的塊咱們稱之爲一個磁盤塊,能夠看到每一個磁盤塊包含幾個數據項(深藍色所示)和指針(黃色所示),如磁盤塊1包含數據項17和35,包含指針P一、P二、P3,P1表示小於17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大於35的磁盤塊。真實的數據存在於葉子節點即三、五、九、十、1三、1五、2八、2九、3六、60、7五、7九、90、99。非葉子節點只不存儲真實的數據,只存儲指引搜索方向的數據項,如1七、35並不真實存在於數據表中。
b+樹的查找過程
如圖所示,若是要查找數據項29,那麼首先會把磁盤塊1由磁盤加載到內存,此時發生一次IO,在內存中用二分查找肯定29在17和35之間,鎖定磁盤塊1的P2指針,內存時間由於很是短(相比磁盤的IO)能夠忽略不計,經過磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內存,發生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,經過指針加載磁盤塊8到內存,發生第三次IO,同時內存中作二分查找找到29,結束查詢,總計三次IO。真實的狀況是,3層的b+樹能夠表示上百萬的數據,若是上百萬的數據查找只須要三次IO,性能提升將是巨大的,若是沒有索引,每一個數據項都要發生一次IO,那麼總共須要百萬次的IO,顯然成本很是很是高。
b+樹性質
慢查詢優化
關於MySQL索引原理是比較枯燥的東西,你們只須要有一個感性的認識,並不須要理解得很是透徹和深刻。咱們回頭來看看一開始咱們說的慢查詢,瞭解完索引原理以後,你們是否是有什麼想法呢?先總結一下索引的幾大基本原則
建索引的幾大原則
1.最左前綴匹配原則,很是重要的原則,mysql會一直向右匹配直到遇到範圍查詢(>、<、between、like)就中止匹配,好比a = 1 and b = 2 and c > 3 and d = 4
若是創建(a,b,c,d)順序的索引,d是用不到索引的,若是創建(a,b,d,c)的索引則均可以用到,a,b,d的順序能夠任意調整。
2.=和in能夠亂序,好比a = 1 and b = 2 and c = 3
創建(a,b,c)索引能夠任意順序,mysql的查詢優化器會幫你優化成索引能夠識別的形式。
3.儘可能選擇區分度高的列做爲索引,區分度的公式是count(distinct col)/count(*)
,表示字段不重複的比例,比例越大咱們掃描的記錄數越少,惟一鍵的區分度是1,而一些狀態、性別字段可能在大數據面前區分度就是0,那可能有人會問,這個比例有什麼經驗值嗎?使用場景不一樣,這個值也很難肯定,通常須要join的字段咱們都要求是0.1以上,即平均1條掃描10條記錄。
4.索引列不能參與計算,保持列「乾淨」,好比from_unixtime(create_time) =’2014-05-29’
就不能使用到索引,緣由很簡單,b+樹中存的都是數據表中的字段值,但進行檢索時,須要把全部元素都應用函數才能比較,顯然成本太大。因此語句應該寫成create_time= unix_timestamp(’2014-05-29’);
5.儘可能的擴展索引,不要新建索引。好比表中已經有a的索引,如今要加(a,b)的索引,那麼只須要修改原來的索引便可
一條簡單sql的查詢優化
select count(*) from task where status=2 and operator_id=20839 and operate_time>1371169729 and operate_time<1371174603 and type=2;
根據最左匹配原則,該sql語句的索引應該是status、operator_id、type、operate_time的聯合索引;其中status、operator_id、type的順序能夠顛倒;
好比還有以下查詢
select * from task where status = 0 and type = 12 limit 10; select count(*) from task where status = 0 ;
那麼索引創建成(status,type,operator_id,operate_time)
就是很是正確的,由於能夠覆蓋到全部狀況。這個就是利用了索引的最左匹配的原則。
查詢優化神器 – explain命令
關於explain命令相信你們並不陌生,具體用法和字段含義能夠參考官網explain-output,這裏須要強調rows是核心指標,絕大部分rows小的語句執行必定很快(有例外,下面會講到)。因此優化語句基本上都是在優化rows。
慢查詢優化基本步驟
0.先運行看看是否真的很慢,注意設置SQL_NO_CACHE
1.where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數最小的表開始查起,單表每一個字段分別查詢,看哪一個字段的區分度最高;
2.explain查看執行計劃,是否與1預期一致(從鎖定記錄較少的表開始查詢);
3.order by limit 形式的sql語句讓排序的表優先查;
4.瞭解業務方使用場景;
5.加索引時參照建索引的幾大原則;
6.觀察結果,不符合預期繼續從0分析。
做者: IT程序獅 連接:http://www.imooc.com/article/4817?from=itblog 來源:慕課網