51nod 抽卡大賽

抽卡大賽

連接html

分析:ios

  $O(n^4)$的作法比較好想,枚舉第i我的選第j個,而後揹包一下,求出有k個比他大的機率。git

  優化:函數

  第i我的,選擇一張卡片,第j我的選的卡片大於第i我的的機率是$p_j$,那麼答案的生成函數是:優化

  $\prod \limits _{j = 1}^{n} [j != i]((1 - p_j) + p_jx)$spa

  那麼能夠將全部人選的卡片按A排序,每次移動,只有一個多項式發生改變,改變的只有一我的,每一個人只有一個長度爲2的多項式,乘和除均可以作到$O(n)$。code

代碼: htm

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cctype>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
using namespace std;
typedef long long LL;

inline int read() {
    int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
    for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f;
}

const int N = 205, mod = 1e9 + 7, inv100 = 570000004;

struct Node { int A, G, P, id; } a[N * N];
bool operator < (const Node& x,const Node &y) { return x.A > y.A; }
int f[N], v[N], sump[N], ans[N], n;

int ksm(int a,int b) {
    int res = 1;
    while (b) {
        if (b & 1) res = 1ll * res * a % mod;
        a = 1ll * a * a % mod;
        b >>= 1;
    }
    return res;
}
void Div(int p) {
    int inv = ksm(1 - p, mod - 2);
    f[0] = 1ll * f[0] * inv % mod;
    for (int i = 1; i < n; ++i) f[i] = 1ll * (f[i] - 1ll * p * f[i - 1] % mod) * inv % mod;
}
void Mul(int p) {
    for (int i = n - 1; i >= 0; --i) 
    f[i] = (1ll * f[i] * (mod + 1 - p) % mod + 1ll * f[i - 1] * p % mod) % mod;
}
int main() {
    n = read();int cnt = 0;
    for (int i = 1; i <= n; ++i) {
        int m = read(), sum = 0;
        for (int j = 1; j <= m; ++j) {
            a[++cnt].id = i;
            a[cnt].A = read(), a[cnt].G = read(), a[cnt].P = read(); sum += a[cnt].P;
            a[cnt].G = 1ll * (100 - a[cnt].G) * inv100 % mod;
        }
        for (int j = 0; j < m; ++j) 
            a[cnt - j].P = 1ll * a[cnt - j].P * ksm(sum, mod - 2) % mod;
    }
    for (int i = 0; i < n; ++i) v[i] = read();
    sort(a + 1, a + cnt + 1);
    f[0] = 1;
    for (int i = 1; i <= cnt; ++i) {
        if (a[i].id != a[i - 1].id) {
            Div(sump[a[i].id]);
            Mul(sump[a[i - 1].id]);
        }
        for (int j = 0; j < n; ++j) 
            ans[a[i].id] = (ans[a[i].id] + 1ll * f[j] * v[j] % mod * a[i].P % mod * a[i].G) % mod;
        sump[a[i].id] = (sump[a[i].id] + a[i].P) % mod;
    }
    for (int i = 1; i <= n; ++i) printf("%d\n", (ans[i] + mod) % mod);
    return 0;
}
相關文章
相關標籤/搜索