框架前端
分佈式編程java
分佈式文件系統web
文件數據模型算法
注意:業界存在一些術語混亂,有兩個不一樣的東西都叫作「列式數據庫」。這裏列出的有一些是圍繞「key-map」數據模型而建的分佈式、持續型數據庫,其中全部的數據都有(可能綜合了)鍵,並與映射中的鍵-值對相關聯。在一些系統中,多個這樣的值映射能夠與鍵相關聯,而且這些映射被稱爲「列族」(具備映射值的鍵被稱爲「列」)。數據庫
另外一組也可稱爲「列式數據庫」的技術因其存儲數據的方式而有別於前一組,它在磁盤上或在存儲器中——而不是以傳統方式,即全部既定鍵的鍵值都相鄰着、逐行存儲。這些系統也彼此相鄰來存儲全部列值,可是要獲得給定列的全部值卻不須要之前那麼繁複的工做。編程
前一組在這裏被稱爲「key map數據模型」,這二者和Key-value 數據模型之間的界限是至關模糊的。後者對數據模型有更多的存儲格式,可在列式數據庫中列出。若想了解更多關於這兩種模型的區分,可閱讀Daniel Abadi的博客:Distinguishing two major types of Column Stores。後端
鍵-值數據模型api
圖形數據模型數組
NewSQL數據庫瀏覽器
列式數據庫
時間序列數據庫
類SQL處理
數據攝取
服務編程
調度
機器學習
基準測試
安全性
系統部署
應用程序
搜索引擎與框架
MySQL的分支和演化
PostgreSQL的分支和演化
Memcached的分支和演化
嵌入式數據庫
商業智能
數據可視化
物聯網和傳感器
文章推薦
論文
2015 - 2016
2015 - Facebook - One Trillion Edges: Graph Processing at Facebook-Scale.(一兆邊:Facebook規模的圖像處理)
2013 - 2014
2014 - Stanford - Mining of Massive Datasets.(海量數據集挖掘)
2013 - AMPLab - Presto: Distributed Machine Learning and Graph Processing with Sparse Matrices. (Presto: 稀疏矩陣的分佈式機器學習和圖像處理)
2013 - AMPLab - MLbase: A Distributed Machine-learning System. (MLbase:分佈式機器學習系統)
2013 - AMPLab - Shark: SQL and Rich Analytics at Scale. (Shark: 大規模的SQL 和豐富的分析)
2013 - AMPLab - GraphX: A Resilient Distributed Graph System on Spark. (GraphX:基於Spark的彈性分佈式圖計算系統)
2013 - Google - HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm. (HyperLogLog實踐:一個藝術形態的基數估算算法)
2013 - Microsoft - Scalable Progressive Analytics on Big Data in the Cloud.(雲端大數據的可擴展性漸進分析)
2013 - Metamarkets - Druid: A Real-time Analytical Data Store. (Druid:實時分析數據存儲)
2013 - Google - Online, Asynchronous Schema Change in F1.(F1中在線、異步模式的轉變)
2013 - Google - F1: A Distributed SQL Database That Scales. (F1: 分佈式SQL數據庫)
2013 - Google - MillWheel: Fault-Tolerant Stream Processing at Internet Scale.(MillWheel: 互聯網規模下的容錯流處理)
2013 - Facebook - Scuba: Diving into Data at Facebook. (Scuba: 深刻Facebook的數據世界)
2013 - Facebook - Unicorn: A System for Searching the Social Graph. (Unicorn: 一種搜索社交圖的系統)
2013 - Facebook - Scaling Memcache at Facebook. (Facebook 對 Memcache 伸縮性的加強)
2011 - 2012
2012 - Twitter - The Unified Logging Infrastructure for Data Analytics at Twitter. (Twitter數據分析的統一日誌基礎結構)
2012 - AMPLab –Blink and It’s Done: Interactive Queries on Very Large Data. (Blink及其完成:超大規模數據的交互式查詢)
2012 - AMPLab –Fast and Interactive Analytics over Hadoop Data with Spark. (Spark上 Hadoop數據的快速交互式分析)
2012 - AMPLab –Shark: Fast Data Analysis Using Coarse-grained Distributed Memory. (Shark:使用粗粒度的分佈式內存快速數據分析)
2012 - Microsoft –Paxos Replicated State Machines as the Basis of a High-Performance Data Store. (Paxos的複製狀態機——高性能數據存儲的基礎)
2012 - Microsoft –Paxos Made Parallel. (Paxos算法實現並行)
2012 - AMPLab – BlinkDB:BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data.(超大規模數據中有限偏差與有界響應時間的查詢)
2012 - Google –Processing a trillion cells per mouse click.(每次點擊處理一兆個單元格)
2012 - Google –Spanner: Google’s Globally-Distributed Database.(Spanner:谷歌的全球分佈式數據庫)
2011 - AMPLab –Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters.(Scarlett:應對MapReduce集羣中的偏向性內容)
2011 - AMPLab –Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.(Mesos:數據中心中細粒度資源共享的平臺)
2011 - Google –Megastore: Providing Scalable, Highly Available Storage for Interactive Services.(Megastore:爲交互式服務提供可擴展,高度可用的存儲)
2001 - 2010
2010 - Facebook - Finding a needle in Haystack: Facebook’s photo storage.(探究Haystack中的細微之處: Facebook圖片存儲)
2010 - AMPLab - Spark: Cluster Computing with Working Sets.(Spark:工做組上的集羣計算)
2010 - Google - Storage Architecture and Challenges.(存儲架構與挑戰)
2010 - Google - Pregel: A System for Large-Scale Graph Processing.(Pregel: 一種大型圖形處理系統)
2010 - Google - Large-scale Incremental Processing Using Distributed Transactions and Notifications base of Percolator and Caffeine.(使用基於Percolator 和 Caffeine平臺分佈式事務和通知的大規模增量處理)
2010 - Google - Dremel: Interactive Analysis of Web-Scale Datasets.(Dremel: Web規模數據集的交互分析)
2010 - Yahoo - S4: Distributed Stream Computing Platform.(S4:分佈式流計算平臺)
2009 - HadoopDB:An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.(混合MapReduce和DBMS技術用於分析工做負載的的架構)
2008 - AMPLab - Chukwa: A large-scale monitoring system.(Chukwa: 大型監控系統)
2007 - Amazon - Dynamo: Amazon’s Highly Available Key-value Store.(Dynamo: 亞馬遜的高可用的關鍵價值存儲)
2006 - Google - The Chubby lock service for loosely-coupled distributed systems.(面向鬆散耦合的分佈式系統的鎖服務)
2006 - Google - Bigtable: A Distributed Storage System for Structured Data.(Bigtable: 結構化數據的分佈式存儲系統)
2004 - Google - MapReduce: Simplied Data Processing on Large Clusters.(MapReduce: 大型集羣上簡化數據處理)
2003 - Google - The Google File System.(谷歌文件系統)
文章參考:https://blog.csdn.net/qq_44163077/java/article/details/87890160