關於圖的幾個概念定義:node
下面介紹兩種求最小生成樹算法ios
此算法能夠稱爲「加邊法」,初始最小生成樹邊數爲0,每迭代一次就選擇一條知足條件的最小代價邊,加入到最小生成樹的邊集合裏。算法
此算法能夠稱爲「加點法」,每次迭代選擇代價最小的邊對應的點,加入到最小生成樹中。算法從某一個頂點s開始,逐漸長大覆蓋整個連通網的全部頂點。數組
因爲不斷向集合u中加點,因此最小代價邊必須同步更新;須要創建一個輔助數組closedge,用來維護集合v中每一個頂點與集合u中最小代價邊信息,:ui
struct { char vertexData //表示u中頂點信息 UINT lowestcost //最小代價 }closedge[vexCounts]
/************************************************************************ CSDN 勿在浮沙築高臺 http://blog.csdn.net/luoshixian099算法導論--最小生成樹(Prim、Kruskal)2016年7月14日 ************************************************************************/ #include <iostream> #include <vector> #include <queue> #include <algorithm> using namespace std; #define INFINITE 0xFFFFFFFF #define VertexData unsigned int //頂點數據 #define UINT unsigned int #define vexCounts 6 //頂點數量 char vextex[] = { 'A', 'B', 'C', 'D', 'E', 'F' }; struct node { VertexData data; unsigned int lowestcost; }closedge[vexCounts]; //Prim算法中的輔助信息 typedef struct { VertexData u; VertexData v; unsigned int cost; //邊的代價 }Arc; //原始圖的邊信息 void AdjMatrix(unsigned int adjMat[][vexCounts]) //鄰接矩陣表示法 { for (int i = 0; i < vexCounts; i++) //初始化鄰接矩陣 for (int j = 0; j < vexCounts; j++) { adjMat[i][j] = INFINITE; } adjMat[0][1] = 6; adjMat[0][2] = 1; adjMat[0][3] = 5; adjMat[1][0] = 6; adjMat[1][2] = 5; adjMat[1][4] = 3; adjMat[2][0] = 1; adjMat[2][1] = 5; adjMat[2][3] = 5; adjMat[2][4] = 6; adjMat[2][5] = 4; adjMat[3][0] = 5; adjMat[3][2] = 5; adjMat[3][5] = 2; adjMat[4][1] = 3; adjMat[4][2] = 6; adjMat[4][5] = 6; adjMat[5][2] = 4; adjMat[5][3] = 2; adjMat[5][4] = 6; } int Minmum(struct node * closedge) //返回最小代價邊 { unsigned int min = INFINITE; int index = -1; for (int i = 0; i < vexCounts;i++) { if (closedge[i].lowestcost < min && closedge[i].lowestcost !=0) { min = closedge[i].lowestcost; index = i; } } return index; } void MiniSpanTree_Prim(unsigned int adjMat[][vexCounts], VertexData s) { for (int i = 0; i < vexCounts;i++) { closedge[i].lowestcost = INFINITE; } closedge[s].data = s; //從頂點s開始 closedge[s].lowestcost = 0; for (int i = 0; i < vexCounts;i++) //初始化輔助數組 { if (i != s) { closedge[i].data = s; closedge[i].lowestcost = adjMat[s][i]; } } for (int e = 1; e <= vexCounts -1; e++) //n-1條邊時退出 { int k = Minmum(closedge); //選擇最小代價邊 cout << vextex[closedge[k].data] << "--" << vextex[k] << endl;//加入到最小生成樹 closedge[k].lowestcost = 0; //代價置爲0 for (int i = 0; i < vexCounts;i++) //更新v中頂點最小代價邊信息 { if ( adjMat[k][i] < closedge[i].lowestcost) { closedge[i].data = k; closedge[i].lowestcost = adjMat[k][i]; } } } } void ReadArc(unsigned int adjMat[][vexCounts],vector<Arc> &vertexArc) //保存圖的邊代價信息 { Arc * temp = NULL; for (unsigned int i = 0; i < vexCounts;i++) { for (unsigned int j = 0; j < i; j++) { if (adjMat[i][j]!=INFINITE) { temp = new Arc; temp->u = i; temp->v = j; temp->cost = adjMat[i][j]; vertexArc.push_back(*temp); } } } } bool compare(Arc A, Arc B) { return A.cost < B.cost ? true : false; } bool FindTree(VertexData u, VertexData v,vector<vector<VertexData> > &Tree) { unsigned int index_u = INFINITE; unsigned int index_v = INFINITE; for (unsigned int i = 0; i < Tree.size();i++) //檢查u,v分別屬於哪顆樹 { if (find(Tree[i].begin(), Tree[i].end(), u) != Tree[i].end()) index_u = i; if (find(Tree[i].begin(), Tree[i].end(), v) != Tree[i].end()) index_v = i; } if (index_u != index_v) //u,v不在一顆樹上,合併兩顆樹 { for (unsigned int i = 0; i < Tree[index_v].size();i++) { Tree[index_u].push_back(Tree[index_v][i]); } Tree[index_v].clear(); return true; } return false; } void MiniSpanTree_Kruskal(unsigned int adjMat[][vexCounts]) { vector<Arc> vertexArc; ReadArc(adjMat, vertexArc);//讀取邊信息 sort(vertexArc.begin(), vertexArc.end(), compare);//邊按從小到大排序 vector<vector<VertexData> > Tree(vexCounts); //6棵獨立樹 for (unsigned int i = 0; i < vexCounts; i++) { Tree[i].push_back(i); //初始化6棵獨立樹的信息 } for (unsigned int i = 0; i < vertexArc.size(); i++)//依次從小到大取最小代價邊 { VertexData u = vertexArc[i].u; VertexData v = vertexArc[i].v; if (FindTree(u, v, Tree))//檢查此邊的兩個頂點是否在一顆樹內 { cout << vextex[u] << "---" << vextex[v] << endl;//把此邊加入到最小生成樹中 } } } int main() { unsigned int adjMat[vexCounts][vexCounts] = { 0 }; AdjMatrix(adjMat); //鄰接矩陣 cout << "Prim :" << endl; MiniSpanTree_Prim(adjMat,0); //Prim算法,從頂點0開始. cout << "-------------" << endl << "Kruskal:" << endl; MiniSpanTree_Kruskal(adjMat);//Kruskal算法 return 0; }