實際應用中,異常值的出現會毀掉一張熱圖。這一般不是咱們想要的。爲了更好的可視化效果,須要對數據作些預處理,主要有對數轉換,Z-score轉換,抹去異常值,非線性顏色等方式。bash
data <- c(rnorm(5,mean=5), rnorm(5,mean=20), rnorm(5, mean=100), c(600,700,800,900,10000)) data <- matrix(data, ncol=5, byrow=T) data <- as.data.frame(data) rownames(data) <- letters[1:4] colnames(data) <- paste("Grp", 1:5, sep="_") data Grp_1 Grp_2 Grp_3 Grp_4 Grp_5 a 6.61047 20.946720 100.133106 600.000000 5.267921 b 20.80792 99.865962 700.000000 3.737228 19.289715 c 100.06930 800.000000 6.252753 21.464081 98.607518 d 900.00000 3.362886 20.334078 101.117728 10000.000000 # 對數轉換 # +1是爲了防止對0取對數;是加1仍是加個更小的值取決於數據的分佈。 # 加的值通常認爲是檢測的低閾值,低於這個值的數字之間的差別能夠忽略。 data_log <- log2(data+1) data_log Grp_1 Grp_2 Grp_3 Grp_4 Grp_5 a 2.927986 4.455933 6.660112 9.231221 2.647987 b 4.446780 6.656296 9.453271 2.244043 4.342677 c 6.659201 9.645658 2.858529 4.489548 6.638183 d 9.815383 2.125283 4.415088 6.674090 13.287857 data_log$ID = rownames(data_log) data_log_m = melt(data_log, id.vars=c("ID")) p <- ggplot(data_log_m, aes(x=variable,y=ID)) + xlab("samples") + ylab(NULL) + theme_bw() + theme(panel.grid.major = element_blank()) + theme(legend.key=element_blank()) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) + theme(legend.position="top") + geom_tile(aes(fill=value)) + scale_fill_gradient(low = "white", high = "red") ggsave(p, filename="heatmap_log.pdf", width=8, height=12, units=c("cm"),colormodel="srgb")
data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5 a;6.6;20.9;100.1;600.0;5.2 b;20.8;99.8;700.0;3.7;19.2 c;100.0;800.0;6.2;21.4;98.6 d;900;3.3;20.3;101.1;10000" data <- read.table(text=data_ori, header=T, row.names=1, sep=";", quote="") # 去掉方差爲0的行,也就是值全都一致的行 data <- data[apply(data,1,var)!=0,] data Grp_1 Grp_2 Grp_3 Grp_4 Grp_5 a 6.6 20.9 100.1 600.0 5.2 b 20.8 99.8 700.0 3.7 19.2 c 100.0 800.0 6.2 21.4 98.6 d 900.0 3.3 20.3 101.1 10000.0 # 標準化數據,得到Z-score,並轉換爲data.frame data_scale <- as.data.frame(t(apply(data,1,scale))) # 重命名列 colnames(data_scale) <- colnames(data) data_scale Grp_1 Grp_2 Grp_3 Grp_4 Grp_5 a -0.5456953 -0.4899405 -0.1811446 1.7679341 -0.5511538 b -0.4940465 -0.2301542 1.7747592 -0.5511674 -0.4993911 c -0.3139042 1.7740182 -0.5936858 -0.5483481 -0.3180801 d -0.2983707 -0.5033986 -0.4995116 -0.4810369 1.7823177 data_scale$ID = rownames(data_scale) data_scale_m = melt(data_scale, id.vars=c("ID")) p <- ggplot(data_scale_m, aes(x=variable,y=ID)) + xlab("samples") + ylab(NULL) + theme_bw() + theme(panel.grid.major = element_blank()) + theme(legend.key=element_blank()) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) + geom_tile(aes(fill=value)) + scale_fill_gradient(low = "white", high = "red") ggsave(p, filename="heatmap_scale.pdf", width=8, height=12, units=c("cm"),colormodel="srgb")
data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5 a;6.6;20.9;100.1;600.0;5.2 b;20.8;99.8;700.0;3.7;19.2 c;100.0;800.0;6.2;21.4;98.6 d;900;3.3;20.3;101.1;10000" data <- read.table(text=data_ori, header=T, row.names=1, sep=";", quote="") data[data>100] <- 100 data Grp_1 Grp_2 Grp_3 Grp_4 Grp_5 a 6.6 20.9 100.0 100.0 5.2 b 20.8 99.8 100.0 3.7 19.2 c 100.0 100.0 6.2 21.4 98.6 d 100.0 3.3 20.3 100.0 100.0 data$ID = rownames(data) data_m = melt(data, id.vars=c("ID")) p <- ggplot(data_m, aes(x=variable,y=ID)) + xlab("samples") + ylab(NULL) + theme_bw() + theme(panel.grid.major = element_blank()) + theme(legend.key=element_blank()) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) + geom_tile(aes(fill=value)) + scale_fill_gradient(low = "white", high = "red") ggsave(p, filename="heatmap_nooutlier.pdf", width=8, height=12, units=c("cm"),colormodel="srgb")
data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5 a;6.6;20.9;100.1;600.0;5.2 b;20.8;99.8;700.0;3.7;19.2 c;100.0;800.0;6.2;21.4;98.6 d;900;3.3;20.3;101.1;10000" data <- read.table(text=data_ori, header=T, row.names=1, sep=";", quote="") data$ID = rownames(data) data_m = melt(data, id.vars=c("ID"))
# 獲取數據的最大、最小、第一四分位數、中位數、第三四分位數 summary_v <- summary(data_m$value) summary_v Min. 1st Qu. Median Mean 3rd Qu. Max. 3.30 16.05 60.00 681.40 225.80 10000.00 # 在最小值和第一四分位數之間劃出6個區間,第一四分位數和中位數之間劃出6個區間,中位數和第三四分位數之間劃出5個區間,最後的數劃出5個區間 break_v <- unique(c(seq(summary_v[1]*0.95,summary_v[2],length=6),seq(summary_v[2],summary_v[3],length=6),seq(summary_v[3],summary_v[5],length=5),seq(summary_v[5],summary_v[6]*1.05,length=5))) break_v [1] 3.135 5.718 8.301 10.884 13.467 16.050 24.840 [8] 33.630 42.420 51.210 60.000 101.450 142.900 184.350 [15] 225.800 2794.350 5362.900 7931.450 10500.000 # 安照設定的區間分割數據 # 原始數據替換爲了其所在的區間的數值 data_m$value <- cut(data_m$value, breaks=break_v,labels=break_v[2:length(break_v)]) break_v=unique(data_m$value) data_m ID variable value 1 a Grp_1 8.301 2 b Grp_1 24.84 3 c Grp_1 101.45 4 d Grp_1 2794.35 5 a Grp_2 24.84 6 b Grp_2 101.45 7 c Grp_2 2794.35 8 d Grp_2 5.718 9 a Grp_3 101.45 10 b Grp_3 2794.35 11 c Grp_3 8.301 12 d Grp_3 24.84 13 a Grp_4 2794.35 14 b Grp_4 5.718 15 c Grp_4 24.84 16 d Grp_4 101.45 17 a Grp_5 5.718 18 b Grp_5 24.84 19 c Grp_5 101.45 20 d Grp_5 10500
# 雖然看上去仍是數值,但已經不是數字類型了 # 而是不一樣的因子了,這樣就能夠對不一樣的因子賦予不一樣的顏色了 > is.numeric(data_m$value) [1] FALSE > is.factor(data_m$value) [1] TRUE break_v #[1] 8.301 24.84 101.45 2794.35 5.718 10500 #18 Levels: 5.718 8.301 10.884 13.467 16.05 24.84 33.63 42.42 51.21 … 10500 # 產生對應數目的顏色 gradientC=c('green','yellow','red') col <- colorRampPalette(gradientC)(length(break_v)) col #[1] "#00FF00" "#66FF00" "#CCFF00" "#FFCB00" "#FF6500" "#FF0000" p <- ggplot(data_m, aes(x=variable,y=ID)) + xlab("samples") + ylab(NULL) + theme_bw() + theme(panel.grid.major = element_blank()) + theme(legend.key=element_blank()) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) + geom_tile(aes(fill=value)) # 與上面不一樣的地方,使用的是scale_fill_manual逐個賦值 p <- p + scale_fill_manual(values=col) ggsave(p, filename="heatmap_nonlinear.pdf", width=8, height=12, units=c("cm"),colormodel="srgb")
data_rowname <- rownames(data) data_rowname <- as.vector(rownames(data)) data_rownames <- rev(data_rowname) data_log_m$ID <- factor(data_log_m$ID, levels=data_rownames, ordered=T) p <- ggplot(data_log_m, aes(x=variable,y=ID)) + xlab(NULL) + ylab(NULL) + theme_bw() + theme(panel.grid.major = element_blank()) + theme(legend.key=element_blank()) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) + theme(legend.position="top") + geom_tile(aes(fill=value)) + scale_fill_gradient(low = "white", high = "red") ggsave(p, filename="heatmap_log.pdf", width=8, height=12, units=c("cm"),colormodel="srgb")