21.SQL to MongoDB Mapping Chart-官方文檔摘錄

有關關係型數據庫跟Mongod的語法對比javascript

In addition to the charts that follow, you might want to consider the Frequently Asked Questions section for a selection of common questions about MongoDB.java

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology and concepts.mysql

SQL Terms/Concepts MongoDB Terms/Concepts
database database
table collection
row document or BSON document
column field
index index
table joins $lookup, embedded documents

primary keysql

Specify any unique column or column combination as primary key.mongodb

primary key數據庫

In MongoDB, the primary key is automatically set to the _idfield.oracle

aggregation (e.g. group by)

aggregation pipelineapp

See the SQL to Aggregation Mapping Chart.less

Executables

The following table presents some database executables and the corresponding MongoDB executables. This table is not meant to be exhaustive.ide

  MongoDB MySQL Oracle Informix DB2
Database Server mongod mysqld oracle IDS DB2 Server
Database Client mongo mysql sqlplus DB-Access DB2 Client

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume a table named people.

  • The MongoDB examples assume a collection named people that contain documents of the following prototype:

    {
      _id: ObjectId("509a8fb2f3f4948bd2f983a0"), user_id: "abc123", age: 55, status: 'A' } 

Create and Alter

The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.

SQL Schema Statements MongoDB Schema Statements
CREATE TABLE people ( id MEDIUMINT NOT NULL AUTO_INCREMENT, user_id Varchar(30), age Number, status char(1), PRIMARY KEY (id) ) 

Implicitly created on first insertOne() or insertMany()operation. The primary key _id is automatically added if _id field is not specified.

db.people.insertOne( {  user_id: "abc123",  age: 55,  status: "A"  } ) 

However, you can also explicitly create a collection:

db.createCollection("people") 
ALTER TABLE people ADD join_date DATETIME 

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, updateMany() operations can add fields to existing documents using the $set operator.

db.people.updateMany(  { },  { $set: { join_date: new Date() } } ) 
ALTER TABLE people DROP COLUMN join_date 

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, updateMany() operations can remove fields from documents using the $unset operator.

db.people.updateMany(  { },  { $unset: { "join_date": "" } } ) 
CREATE INDEX idx_user_id_asc ON people(user_id) 
db.people.createIndex( { user_id: 1 } ) 
CREATE INDEX idx_user_id_asc_age_desc ON people(user_id, age DESC) 
db.people.createIndex( { user_id: 1, age: -1 } ) 
DROP TABLE people 
db.people.drop() 

For more information, see:

Insert

The following table presents the various SQL statements related to inserting records into tables and the corresponding MongoDB statements.

SQL INSERT Statements MongoDB insertOne() Statements
INSERT INTO people(user_id, age, status) VALUES ("bcd001", 45, "A") 
db.people.insertOne( { user_id: "bcd001", age: 45, status: "A" } ) 

For more information, see db.collection.insertOne().

Select

The following table presents the various SQL statements related to reading records from tables and the corresponding MongoDB statements.

NOTE

The find() method always includes the _id field in the returned documents unless specifically excluded through projection. Some of the SQL queries below may include an _id field to reflect this, even if the field is not included in the corresponding find() query.

SQL SELECT Statements MongoDB find() Statements
SELECT * FROM people 
db.people.find() 
SELECT id, user_id, status FROM people 
db.people.find(  { },  { user_id: 1, status: 1 } ) 
SELECT user_id, status FROM people 
db.people.find(  { },  { user_id: 1, status: 1, _id: 0 } ) 
SELECT * FROM people WHERE status = "A" 
db.people.find(  { status: "A" } ) 
SELECT user_id, status FROM people WHERE status = "A" 
db.people.find(  { status: "A" },  { user_id: 1, status: 1, _id: 0 } ) 
SELECT * FROM people WHERE status != "A" 
db.people.find(  { status: { $ne: "A" } } ) 
SELECT * FROM people WHERE status = "A" AND age = 50 
db.people.find(  { status: "A",  age: 50 } ) 
SELECT * FROM people WHERE status = "A" OR age = 50 
db.people.find(  { $or: [ { status: "A" } ,  { age: 50 } ] } ) 
SELECT * FROM people WHERE age > 25 
db.people.find(  { age: { $gt: 25 } } ) 
SELECT * FROM people WHERE age < 25 
db.people.find(  { age: { $lt: 25 } } ) 
SELECT * FROM people WHERE age > 25 AND age <= 50 
db.people.find(  { age: { $gt: 25, $lte: 50 } } ) 
SELECT * FROM people WHERE user_id like "%bc%" 
db.people.find( { user_id: /bc/ } ) 

-or-

db.people.find( { user_id: { $regex: /bc/ } } ) 
SELECT * FROM people WHERE user_id like "bc%" 
db.people.find( { user_id: /^bc/ } ) 

-or-

db.people.find( { user_id: { $regex: /^bc/ } } ) 
SELECT * FROM people WHERE status = "A" ORDER BY user_id ASC 
db.people.find( { status: "A" } ).sort( { user_id: 1 } ) 
SELECT * FROM people WHERE status = "A" ORDER BY user_id DESC 
db.people.find( { status: "A" } ).sort( { user_id: -1 } ) 
SELECT COUNT(*) FROM people 
db.people.count() 

or

db.people.find().count() 
SELECT COUNT(user_id) FROM people 
db.people.count( { user_id: { $exists: true } } ) 

or

db.people.find( { user_id: { $exists: true } } ).count() 
SELECT COUNT(*) FROM people WHERE age > 30 
db.people.count( { age: { $gt: 30 } } ) 

or

db.people.find( { age: { $gt: 30 } } ).count() 
SELECT DISTINCT(status) FROM people 
db.people.distinct( "status" ) 
SELECT * FROM people LIMIT 1 
db.people.findOne() 

or

db.people.find().limit(1) 
SELECT * FROM people LIMIT 5 SKIP 10 
db.people.find().limit(5).skip(10) 
EXPLAIN SELECT * FROM people WHERE status = "A" 
db.people.find( { status: "A" } ).explain() 

For more information, see:

Update Records

The following table presents the various SQL statements related to updating existing records in tables and the corresponding MongoDB statements.

SQL Update Statements MongoDB updateMany() Statements
UPDATE people SET status = "C" WHERE age > 25 
db.people.updateMany(  { age: { $gt: 25 } },  { $set: { status: "C" } } ) 
UPDATE people SET age = age + 3 WHERE status = "A" 
db.people.updateMany(  { status: "A" } ,  { $inc: { age: 3 } } ) 

For more information, see db.collection.updateMany()$set$inc, and $gt.

Delete Records

The following table presents the various SQL statements related to deleting records from tables and the corresponding MongoDB statements.

SQL Delete Statements MongoDB deleteMany() Statements
DELETE FROM people WHERE status = "D" 
db.people.deleteMany( { status: "D" } ) 
DELETE FROM people 
db.people.deleteMany({}) 

For more information, see db.collection.deleteMany().

相關文章
相關標籤/搜索