課程一(Neural Networks and Deep Learning),第二週(Basics of Neural Network programming)—— 四、Logistic Regres

Logistic Regression with a Neural Network mindset

Welcome to the first (required) programming exercise of the deep learning specialization. In this notebook you will build your first image recognition algorithm. You will build a cat classifier that recognizes cats with 70% accuracy!python

As you keep learning new techniques you will increase it to 80+ % accuracy on cat vs. non-cat datasets. By completing this assignment you will:算法

- Work with logistic regression in a way that builds intuition relevant to neural networks.express

- Learn how to minimize the cost function.編程

- Understand how derivatives of the cost are used to update parameters.api

Take your time to complete this assignment and make sure you get the expected outputs when working through the different exercises. In some code blocks, you will find a "#GRADED FUNCTION: functionName" comment. Please do not modify these comments. After you are done, submit your work and check your results. You need to score 70% to pass. Good luck :) !數組

 中文翻譯-------->網絡

神經網絡的邏輯迴歸
歡迎來首 (必填) 編程練習的深度學習專業化。在本筆記本中, 您將構建第一個圖像識別算法。你將創建一個貓分類器, 識別貓與70% 的準確性!
隨着你不斷學習新的技術, 你將增長到 80 +% 的準確性 cat vs. non-cat 數據集。經過完成此任務, 您將:
 
-使用邏輯迴歸的方法。
-瞭解如何將成本函數降到最低。
-瞭解如何使用成本的導數來更新參數。
 
用你的時間完成這個任務, 並確保你獲得預期的產出時, 經過不一樣的練習。在某些代碼塊中, 您將找到一個"#GRADED FUNCTION: functionName" 註釋。請不要修改這些註釋。完成後, 提交您的工做, 並檢查您的結果。你須要得分70% 才能過關。祝你好運:)!
---------------------------------------------------------------------------------------------------------------------------------------------------

Logistic Regression with a Neural Network mindset

Welcome to your first (required) programming assignment! You will build a logistic regression classifier to recognize cats. This assignment will step you through how to do this with a Neural Network mindset, and so will also hone your intuitions about deep learning.app

Instructions:less

  • Do not use loops (for/while) in your code, unless the instructions explicitly ask you to do so.

You will learn to:機器學習

  • Build the general architecture of a learning algorithm, including:
    • Initializing parameters
    • Calculating the cost function and its gradient
    • Using an optimization algorithm (gradient descent)
  • Gather all three functions above into a main model function, in the right order.
 中文翻譯-------->
神經網絡的邏輯迴歸
歡迎您的第一個 (必填) 編程任務!你將創建一個邏輯迴歸分類器來識別貓。這項任務將會讓你經過神經網絡思惟來完成這項工做, 也會磨練你對深度學習的直覺。
說明:
不要在代碼中使用循環, 除非指令明確要求您這樣作。
您將學習:
一、構建學習算法的通常體系結構, 包括:
(1)初始化參數
(2)成本函數及其梯度的計算
(3)使用優化算法 (漸變降低)
二、按正確的順序將上述全部三函數集中到一個主模型函數中。
-------------------------------------------------------------------------------------------------------------------------------------

1 - Packages

First, let's run the cell below to import all the packages that you will need during this assignment.

  • numpy is the fundamental package for scientific computing with Python.
  • h5py is a common package to interact with a dataset that is stored on an H5 file.
  • matplotlib is a famous library to plot graphs in Python.
  • PIL and scipy are used here to test your model with your own picture at the end.
code------------->
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset

%matplotlib inline

 -----------------------------------------------------------------------------------------------------------------------------------------------

2 - Overview of the Problem set

Problem Statement: You are given a dataset ("data.h5") containing:

- a training set of m_train images labeled as cat (y=1) or non-cat (y=0)
- a test set of m_test images labeled as cat or non-cat
- each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB). Thus, each image is square (height = num_px) and (width = num_px).

You will build a simple image-recognition algorithm that can correctly classify pictures as cat or non-cat.

Let's get more familiar with the dataset. Load the data by running the following code.

# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

 

We added "_orig" at the end of image datasets (train and test) because we are going to preprocess them. After preprocessing, we will end up with train_set_x and test_set_x (the labels train_set_y and test_set_y don't need any preprocessing).

Each line of your train_set_x_orig and test_set_x_orig is an array representing an image. You can visualize an example by running the following code. Feel free also to change the index value and re-run to see other images.

中文翻譯------>

咱們在圖像數據集 (訓練和測試) 的末尾添加了 "_orig", 由於咱們要對它們進行預處理。通過預處理後, 咱們將獲得train_set_x 和 test_set_x (標籤 train_set_y 和 test_set_y 不須要任何預處理)。
train_set_x_orig 和 test_set_x_orig 的每一列都是一個表示圖像的數組。您能夠經過運行如下代碼來可視化一個示例。也能夠隨意更改索引值並從新運行以查看其餘圖像。
# Example of a picture
index = 25
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")

 

result:

y = [1], it's a 'cat' picture.

-------------------------------------------------------------------------------------------------------------------------------------------------------------

Many software bugs in deep learning come from having matrix/vector dimensions that don't fit. If you can keep your matrix/vector dimensions straight you will go a long way toward eliminating many bugs.

Exercise: Find the values for:

- m_train (number of training examples)
- m_test (number of test examples)
- num_px (= height = width of a training image)

Remember that train_set_x_orig is a numpy-array of shape (m_train, num_px, num_px, 3). For instance, you can access m_train by writing train_set_x_orig.shape[0].

### START CODE HERE ### (≈ 3 lines of code)
m_train = train_set_x_orig.shape[0]
m_test =test_set_x_orig.shape[0]
num_px =train_set_x_orig.shape[1]  #train_set_x_orig= (m_train, num_px, num_px, 3).
### END CODE HERE ###

print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))

 result:

Number of training examples: m_train = 209
Number of testing examples: m_test = 50
Height/Width of each image: num_px = 64
Each image is of size: (64, 64, 3)
train_set_x shape: (209, 64, 64, 3)
train_set_y shape: (1, 209)
test_set_x shape: (50, 64, 64, 3)
test_set_y shape: (1, 50)

 

Expected Output for m_train, m_test and num_px:

m_train 209
m_test 50
num_px 64

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

For convenience, you should now reshape images of shape (num_px, num_px, 3) in a numpy-array of shape (num_px ∗ num_px ∗ 3, 1). After this, our training (and test) dataset is a numpy-array where each column represents a flattened image. There should be m_train (respectively m_test) columns.

Exercise: Reshape the training and test data sets so that images of size (num_px, num_px, 3) are flattened into single vectors of shape (num_px ∗ num_px ∗ 3, 1).

A trick when you want to flatten a matrix X of shape (a,b,c,d) to a matrix X_flatten of shape (b∗c∗d, a) is to use:

X_flatten = X.reshape(X.shape[0], -1).T # X.T is the transpose of X
# Reshape the training and test examples

### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
### END CODE HERE ###

print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0])) #整形後的完整性檢查

 result:

train_set_x_flatten shape: (12288, 209)
train_set_y shape: (1, 209)
test_set_x_flatten shape: (12288, 50)
test_set_y shape: (1, 50)
sanity check after reshaping: [17 31 56 22 33]

 

Expected Output:

train_set_x_flatten shape (12288, 209)
train_set_y shape (1, 209)
test_set_x_flatten shape (12288, 50)
test_set_y shape (1, 50)
sanity check after reshaping [17 31 56 22 33]
---------------------------------------------------------------------------------------------------------------------------------------

To represent color images, the red, green and blue channels (RGB) must be specified for each pixel, and so the pixel value is actually a vector of three numbers ranging from 0 to 255.

One common preprocessing step in machine learning is to center and standardize your dataset, meaning that you substract the mean of the whole numpy array from each example, and then divide each example by the standard deviation of the whole numpy array. But for picture datasets, it is simpler and more convenient and works almost as well to just divide every row of the dataset by 255 (the maximum value of a pixel channel).

Let's standardize our dataset.

中文翻譯------->

要表示彩色圖像, 必須爲每一個像素指定紅色、綠色和藍色通道 (RGB), 所以像素值其實是三數字的向量, 這些數字從0到255不等。
機器學習中一個常見的預處理步驟是中心化和標準化數據集, 這意味着您減每一個示例中的整個 numpy 數組的平均值, 而後除以numpy 數組的標準差。可是對於圖片數據集,能夠將數據集的每一行除以 255 (像素通道的最大值),這樣更簡單、更方便。
讓咱們標準化數據集。

What you need to remember:

Common steps for pre-processing a new dataset are:

  • Figure out the dimensions and shapes of the problem (m_train, m_test, num_px, ...)
  • Reshape the datasets such that each example is now a vector of size (num_px * num_px * 3, 1)
  • "Standardize" the data
中文翻譯------->
您須要記住的內容:
  用於預處理新數據集的經常使用步驟有:
  找出問題的尺寸和形狀 (m_train, m_test, num_px,...)
  重塑數據集, 使每一個示例都是一個列向量 (num_px * num_px * 3, 1)
  "標準化" 數據
-------------------------------------------------------------------------------------------------------------

3 - General Architecture of the learning algorithm

It's time to design a simple algorithm to distinguish cat images from non-cat images.

You will build a Logistic Regression, using a Neural Network mindset. The following Figure explains why Logistic Regression is actually a very simple Neural Network!

Mathematical expression of the algorithm:

For one example x(i)x(i):

The cost is then computed by summing over all training examples:

Key steps: In this exercise, you will carry out the following steps:

- Initialize the parameters of the model
- Learn the parameters for the model by minimizing the cost  
- Use the learned parameters to make predictions (on the test set)
- Analyse the results and conclude
------------------------------------------------------------------------------------------------------------

4 - Building the parts of our algorithm

The main steps for building a Neural Network are:

  1. Define the model structure (such as number of input features)
  2. Initialize the model's parameters
  3. Loop:
    • Calculate current loss (forward propagation)
    • Calculate current gradient (backward propagation)
    • Update parameters (gradient descent)

You often build 1-3 separately and integrate them into one function we call model().

4.1 - Helper functions(輔助函數)

Exercise: Using your code from "Python Basics", implement sigmoid(). As you've seen in the figure above, you need to compute 

to make predictions. Use np.exp().

# GRADED FUNCTION: sigmoid

def sigmoid(z):
    """
    Compute the sigmoid of z

    Arguments:
    z -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(z)
    """

    ### START CODE HERE ### (≈ 1 line of code)
    s = 1/(1+np.exp(-z))
    ### END CODE HERE ###
    
    return s

 

print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2]))))

 

result:

sigmoid([0, 2]) = [ 0.5         0.88079708]

 

Expected Output:

sigmoid([0, 2]) [ 0.5 0.88079708]
-----------------------------------------------------------------------------------------------------------------------------------------------------

4.2 - Initializing parameters

Exercise: Implement parameter initialization in the cell below. You have to initialize w as a vector of zeros. If you don't know what numpy function to use, look up np.zeros() in the Numpy library's documentation.

# GRADED FUNCTION: initialize_with_zeros

def initialize_with_zeros(dim):
    """
    This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
    
    Argument:
    dim -- size of the w vector we want (or number of parameters in this case)
    
    Returns:
    w -- initialized vector of shape (dim, 1)
    b -- initialized scalar (corresponds to the bias)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    w = np.zeros((dim,1)) 
    b = 0
    ### END CODE HERE ###

    assert(w.shape == (dim, 1))
    assert(isinstance(b, float) or isinstance(b, int))
    
    return w, b
dim = 2
w, b = initialize_with_zeros(dim)
print ("w = " + str(w))
print ("b = " + str(b))

 

result:

w = [[ 0.]
 [ 0.]]
b = 0

Expected Output:

w [[ 0.] [ 0.]]
b 0

For image inputs, w will be of shape (num_px ×× num_px ×× 3, 1).

 ----------------------------------------------------------------------------------------------------------------------------------------

4.3 - Forward and Backward propagation

Now that your parameters are initialized, you can do the "forward" and "backward" propagation steps for learning the parameters.

Exercise: Implement a function propagate()(傳播函數) that computes the cost function and its gradient.

Hints(提示):

Forward Propagation:

  • You get X
  • You compute 
  • You calculate the cost function: 

Here are the two formulas you will be using:

# GRADED FUNCTION: propagate

def propagate(w, b, X, Y):
    """
    Implement the cost function and its gradient for the propagation explained above

    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)

    Return:
    cost -- negative log-likelihood cost for logistic regression
    dw -- gradient of the loss with respect to w, thus same shape as w
    db -- gradient of the loss with respect to b, thus same shape as b
    
    Tips:
    - Write your code step by step for the propagation. np.log(), np.dot()
    """
    
    m = X.shape[1]
    
    # FORWARD PROPAGATION (FROM X TO COST
    ### START CODE HERE ### (≈ 2 lines of code)
    A = sigmoid(np.add(np.dot(w.T, X), b))                                  # compute activation
    cost = -(np.dot(Y, np.log(A).T) + np.dot(1 - Y, np.log(1 - A).T)) / m                             # compute cost
    ### END CODE HERE ###
    
    # BACKWARD PROPAGATION (TO FIND GRAD)
    ### START CODE HERE ### (≈ 2 lines of code)
    dw = np.dot(X, (A - Y).T) / m
    db = np.sum(A - Y) / m
    ### END CODE HERE ###

    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)    #從數組的形狀中刪除單維條目,即把shape中爲1的維度去掉
    assert(cost.shape == ())   #判斷剩下的是否爲空
    
    grads = {"dw": dw,
             "db": db}
    
    return grads, cost

 

w, b, X, Y = np.array([[1.],[2.]]), 2., np.array([[1.,2.,-1.],[3.,4.,-3.2]]), np.array([[1,0,1]])
grads, cost = propagate(w, b, X, Y)
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print ("cost = " + str(cost))

 

result:

dw = [[ 0.99845601]
 [ 2.39507239]]
db = 0.00145557813678
cost = 5.801545319394553

 

Expected Output:

dw [[ 0.99845601] [ 2.39507239]]
db 0.00145557813678
cost 5.801545319394553
 ---------------------------------------------------------------------------------------------------------------------------------------------

d) Optimization

  • You have initialized your parameters.
  • You are also able to compute a cost function and its gradient.
  • Now, you want to update the parameters using gradient descent.

Exercise: Write down the optimization function. The goal is to learn w and bb by minimizing the cost function J. For a parameter θθ, the update rule is θ=θα dθθ=θ−α dθ, where αα is the learning rate.

# GRADED FUNCTION: optimize

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    """
    This function optimizes w and b by running a gradient descent algorithm
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- True to print the loss every 100 steps
    
    Returns:
    params -- dictionary containing the weights w and bias b
    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
    
    Tips:
    You basically need to write down two steps and iterate through them:
        1) Calculate the cost and the gradient for the current parameters. Use propagate().
        2) Update the parameters using gradient descent rule for w and b.
    """
    
    costs = []
    
    for i in range(num_iterations):
        
        
        # Cost and gradient calculation (≈ 1-4 lines of code)
        ### START CODE HERE ### 
        grads, cost = propagate(w, b, X, Y)
        ### END CODE HERE ###
        
        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]
        
        # update rule (≈ 2 lines of code)
        ### START CODE HERE ###
        w = w- learning_rate*dw
        b = b- learning_rate*db
        ### END CODE HERE ###
        
        # Record the costs
        if i % 100 == 0:
            costs.append(cost)
        
        # Print the cost every 100 training examples
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
    
    params = {"w": w,
              "b": b}
    
    grads = {"dw": dw,
             "db": db}
    
    return params, grads, costs

 

params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False)

print ("w = " + str(params["w"]))
print ("b = " + str(params["b"]))
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))

 

result:

w = [[ 0.19033591]
 [ 0.12259159]]
b = 1.92535983008
dw = [[ 0.67752042]
 [ 1.41625495]]
db = 0.219194504541

 

Expected Output:

w [[ 0.19033591] [ 0.12259159]]
b 1.92535983008
dw [[ 0.67752042] [ 1.41625495]]
db 0.219194504541

Exercise: The previous function will output the learned w and b. We are able to use w and b to predict the labels for a dataset X. Implement the predict()function. There is two steps to computing predictions:

  1. Calculate 

  2. Convert the entries of a into 0 (if activation <= 0.5) or 1 (if activation > 0.5), stores the predictions in a vector Y_prediction. If you wish, you can use an if/else statement in a for loop (though there is also a way to vectorize this).

# GRADED FUNCTION: predict

def predict(w, b, X):
    '''
    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    
    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''
    
    m = X.shape[1]    #樣本數
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)
    
    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    ### START CODE HERE ### (≈ 1 line of code)
    A =  sigmoid(np.add(np.dot(w.T, X), b))  #(1,m)
    ### END CODE HERE ###
    
    for i in range(A.shape[1]):
        
        # Convert probabilities A[0,i] to actual predictions p[0,i]
        ### START CODE HERE ### (≈ 4 lines of code)
        if A[0,i]<=0.5:
             Y_prediction[0,i]= 0
        else:
             Y_prediction[0,i]= 1
        ### END CODE HERE ###
    
    assert(Y_prediction.shape == (1, m))
    
    return Y_prediction

 

w = np.array([[0.1124579],[0.23106775]])
b = -0.3
X = np.array([[1.,-1.1,-3.2],[1.2,2.,0.1]])
print ("predictions = " + str(predict(w, b, X)))

 

result:

predictions = [[ 1.  1.  0.]]

 

Expected Output:

 

predictions [[ 1. 1. 0.]]

What to remember: You've implemented several functions that:

  • Initialize (w,b)
  • Optimize the loss iteratively to learn parameters (w,b):
    • computing the cost and its gradient
    • updating the parameters using gradient descent
  • Use the learned (w,b) to predict the labels for a given set of examples
中文翻譯------>
要記住的內容: 您已經實現瞭如下幾個功能:
初始化 (w, b)
迭代地優化損失函數,學習參數 (w, b):
  計算成本函數及其梯度
  使用梯度降低算法來更新參數
使用所學 (w, b) 來預測給定標籤的數據集
----------------------------------------------------------------------------------------------------------------------------

5 - Merge all functions into a model

You will now see how the overall model is structured by putting together all the building blocks (functions implemented in the previous parts) together, in the right order.

Exercise: Implement the model function. Use the following notation:

- Y_prediction for your predictions on the test set
- Y_prediction_train for your predictions on the train set
- w, costs, grads for the outputs of optimize()
# GRADED FUNCTION: model

def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
    """
    Builds the logistic regression model by calling the function you've implemented previously
    
    Arguments:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to true to print the cost every 100 iterations
    
    Returns:
    d -- dictionary containing information about the model.
    """
    
    ### START CODE HERE ###
    
    # initialize parameters with zeros (≈ 1 line of code)
    w, b = initialize_with_zeros(X_train.shape[0])

    # Gradient descent (≈ 1 line of code)
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
    
    # Retrieve parameters w and b from dictionary "parameters"
    w = parameters["w"]
    b = parameters["b"]
    
    # Predict test/train set examples (≈ 2 lines of code)
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)
    ### END CODE HERE ###

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test, 
         "Y_prediction_train" : Y_prediction_train, 
         "w" : w, 
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}
    
    return d

 Run the following cell to train your model.

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations =2000, learning_rate = 0.005, print_cost = True)

 

Cost after iteration 0: 0.693147
Cost after iteration 100: 0.584508
Cost after iteration 200: 0.466949
Cost after iteration 300: 0.376007
Cost after iteration 400: 0.331463
Cost after iteration 500: 0.303273
Cost after iteration 600: 0.279880
Cost after iteration 700: 0.260042
Cost after iteration 800: 0.242941
Cost after iteration 900: 0.228004
Cost after iteration 1000: 0.214820
Cost after iteration 1100: 0.203078
Cost after iteration 1200: 0.192544
Cost after iteration 1300: 0.183033
Cost after iteration 1400: 0.174399
Cost after iteration 1500: 0.166521
Cost after iteration 1600: 0.159305
Cost after iteration 1700: 0.152667
Cost after iteration 1800: 0.146542
Cost after iteration 1900: 0.140872
train accuracy: 99.04306220095694 %
test accuracy: 70.0 %

 

Expected Output:

 

Cost after iteration 0 0.693147
Train Accuracy 99.04306220095694 %
Test Accuracy 70.0 %

Comment: Training accuracy is close to 100%. This is a good sanity check: your model is working and has high enough capacity to fit the training data. Test error is 68%. It is actually not bad for this simple model, given the small dataset we used and that logistic regression is a linear classifier. But no worries, you'll build an even better classifier next week!

Also, you see that the model is clearly overfitting the training data. Later in this specialization you will learn how to reduce overfitting, for example by using regularization. Using the code below (and changing the index variable) you can look at predictions on pictures of the test set.

中文翻譯------->

備註: 訓練集預測的準確度接近100%。這是一個很好的健全檢查: 您的模型是有效的, 有足夠高的能力, 適應訓練數據。測試集預測的錯誤率爲68%。對個簡單的模型,這個結果其實是不壞的。由於咱們使用的小數據集和邏輯迴歸是一個線性分類器。但不用擔憂, 下週你會創建一個更好的分類器!
此外, 您還能夠看到模型顯然過擬合了訓練數據。在本專業後期, 您將學習如何減小過擬合, 例如使用正則化。使用下面的代碼 (並更改索引變量), 您能夠查看測試集的預測結果以及對應的圖片。
# Example of a picture that was wrongly classified.
index =1
plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3)))
print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[d["Y_prediction_test"][0,index]].decode("utf-8") +  "\" picture.")

 result:

y = 1, you predicted that it is a "cat" picture.

Let's also plot the cost function and the gradients.

 
# Plot learning curve (with costs)
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

 

Interpretation: You can see the cost decreasing. It shows that the parameters are being learned. However, you see that you could train the model even more on the training set. Try to increase the number of iterations in the cell above and rerun the cells. You might see that the training set accuracy goes up, but the test set accuracy goes down. This is called overfitting.

-----------------------------------------------------------------------------------------------------------------------------------

6 - Further analysis (optional/ungraded exercise)

Congratulations on building your first image classification model. Let's analyze it further, and examine possible choices for the learning rate α.

Choice of learning rate

Reminder: In order for Gradient Descent to work you must choose the learning rate wisely. The learning rate αα determines how rapidly we update the parameters. If the learning rate is too large we may "overshoot" the optimal value. Similarly, if it is too small we will need too many iterations to converge to the best values. That's why it is crucial to use a well-tuned learning rate.

Let's compare the learning curve of our model with several choices of learning rates. Run the cell below. This should take about 1 minute. Feel free also to try different values than the three we have initialized the learning_rates variable to contain, and see what happens.

 
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow= True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

 result:

learning rate is: 0.01
train accuracy: 99.52153110047847 %
test accuracy: 68.0 %

-------------------------------------------------------

learning rate is: 0.001
train accuracy: 88.99521531100478 %
test accuracy: 64.0 %

-------------------------------------------------------

learning rate is: 0.0001
train accuracy: 68.42105263157895 %
test accuracy: 36.0 %

-------------------------------------------------------

 

 

Interpretation:

  • Different learning rates give different costs and thus different predictions results.
  • If the learning rate is too large (0.01), the cost may oscillate up and down. It may even diverge (though in this example, using 0.01 still eventually ends up at a good value for the cost).
  • A lower cost doesn't mean a better model. You have to check if there is possibly overfitting. It happens when the training accuracy is a lot higher than the test accuracy.
  • In deep learning, we usually recommend that you:
    • Choose the learning rate that better minimizes the cost function.
    • If your model overfits, use other techniques to reduce overfitting. (We'll talk about this in later videos.)
中文翻譯------->
解釋:
不一樣的學習速率用於代價函數,於是獲得不一樣的預測結果。
若是學習速率太大 (0.01), 成本可能會上下襬動。它甚至可能會發散 (雖然在這個例子中, 使用0.01 最終仍然到了一個很好的代價函數的值)。
較低的代價函數值並不意味着更好的模型。你必須檢查是否過擬合。當訓練精度比測試精度高不少時, 就會發生這種狀況。
在深刻學習中, 咱們一般建議您:
選擇更好地下降代價函數的學習速率。
若是您的模型過擬合了, 可使用其餘技術減小過擬合。(咱們將在之後的視頻中討論此事)
----------------------------------------------------------------------------------------------------------------------------------

7 - Test with your own image (optional/ungraded exercise)

Congratulations on finishing this assignment. You can use your own image and see the output of your model. To do that:

1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.
2. Add your image to this Jupyter Notebook's directory, in the "images" folder
3. Change your image's name in the following code
4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)!
中文翻譯--------------->
1. 單擊本筆記本欄中的 "文件", 而後單擊 "打開" 進入您的 Coursera Hub。
2. 將您的圖像添加到此 Jupyter 筆記本的目錄中, 在 "圖像" 文件夾中
3. 在下面的代碼中更改圖像的名稱
4. 運行代碼並檢查算法是否正確 (1 = cat, 0 = non-cat)!
 
code1----------------->
## START CODE HERE ## (PUT YOUR IMAGE NAME) 
my_image = "my_cat.jpg"   # change this to the name of your image file 
## END CODE HERE ##

# We preprocess the image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T   #待解釋
my_predicted_image = predict(d["w"], d["b"], my_image)

plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")

 result:

y = 1.0, your algorithm predicts a "cat" picture.

 

code2--------------------->

## START CODE HERE ## (PUT YOUR IMAGE NAME) 
my_image = "my_image.jpg"   # change this to the name of your image file 
## END CODE HERE ##

# We preprocess the image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T   #待解釋
my_predicted_image = predict(d["w"], d["b"], my_image)

plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")

 

result:

y = 0.0, your algorithm predicts a "non-cat" picture.

 

What to remember from this assignment:

  • Preprocessing the dataset is important.
  • You implemented each function separately: initialize(), propagate(), optimize(). Then you built a model().
  • Tuning the learning rate (which is an example of a "hyperparameter") can make a big difference to the algorithm. You will see more examples of this later in this course!

 

--------------------------------------------------------------------------------------------------------------------------------------------

Finally, if you'd like, we invite you to try different things on this Notebook. Make sure you submit before trying anything. Once you submit, things you can play with include:

- Play with the learning rate and the number of iterations
- Try different initialization methods and compare the results
- Test other preprocessings (center the data, or divide each row by its standard deviation)
中文翻譯-------->
最後, 若是你想, 咱們邀請你嘗試不一樣的東西在這個筆記本上。在嘗試任何事情以前, 請務必提交。一旦你提交, 你能夠玩的東西包括:
-嘗試不一樣的學習速率和迭代次數
-嘗試不一樣的初始化方法並比較結果
-測試其餘 預處理方法 (中心化數據, 或除以每行的標準差)

Bibliography(書目):- http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/- https://stats.stackexchange.com/questions/211436/why-do-we-normalize-images-by-subtracting-the-datasets-image-mean-and-not-the-c

相關文章
相關標籤/搜索