JavaShuo
欄目
標籤
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification(PTGAN+MSMT17)
時間 2021-01-07
欄目
HTML
简体版
原文
原文鏈接
論文分爲數據集和圖像風格遷移算法(兩個數據集之間)兩部分: 這是屬於無監督的遷移,GAN Motivation: 1.數據集和現實的區別:1.規模小2.場景單一 3.光照單一 解決:因此提出了更爲複雜的數據集MSMT17。 2.想解決訓練集測試集不均衡的問題:(目前訓練測試集基本上時1:1的比例) 方法:重用之前的別的數據集訓練。但是數據集之前的gap導致識別率低。 Multi-SceneMult
>>阅读原文<<
相關文章
1.
Person Transfer GAN to Bridge Domain Gap for Person Re-identification
2.
【ReID】【Skimming】Unity Style Transfer for Person Re-Identification
3.
Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification
4.
Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
5.
【ReID】EANet: Enhancing Alignment for Cross-Domain Person Re-identification
6.
【ReID】【Skimming】Unsupervised Cross-Dataset Transfer Learning for Person Re-identification
7.
Asymmetric Co-Teaching for Unsupervised Cross-Domain Person Re-Identification
8.
EANet: Enhancing Alignment for Cross-Domain Person Re-identification
9.
ICCV2019-行人重識別-Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
10.
1707.Deep Learning for Person Reidentification Using Support Vector Machines 論文筆記
更多相關文章...
•
ASP Transfer 方法
-
ASP 教程
•
Scala for循環
-
Scala教程
•
Java 8 Stream 教程
•
算法總結-股票買賣
相關標籤/搜索
person
gap
transfer
gan
domain
bridge
concurrenthashmap#transfer
iframe+domain
tap+bridge
bridge+vlan
HTML
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Person Transfer GAN to Bridge Domain Gap for Person Re-identification
2.
【ReID】【Skimming】Unity Style Transfer for Person Re-Identification
3.
Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification
4.
Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
5.
【ReID】EANet: Enhancing Alignment for Cross-Domain Person Re-identification
6.
【ReID】【Skimming】Unsupervised Cross-Dataset Transfer Learning for Person Re-identification
7.
Asymmetric Co-Teaching for Unsupervised Cross-Domain Person Re-Identification
8.
EANet: Enhancing Alignment for Cross-Domain Person Re-identification
9.
ICCV2019-行人重識別-Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
10.
1707.Deep Learning for Person Reidentification Using Support Vector Machines 論文筆記
>>更多相關文章<<