題目連接c++
題意:數組
有n個點的一棵樹,兩種操做:ide
1. a到b的路徑上,給一個y,對於路徑上每一條邊,進行操做,問最後的y;函數
2. 修改某個條邊p的值爲cthis
思路:spa
鏈上操做的問題,想樹鏈剖分和LCT,對於第一種操做,由於是向下取整,考慮y除以路徑上全部邊乘積,即;對於第二種操做,就是線段樹上的單點更新。由於給的是邊的序號,首先每一個id能知道對應的邊值(ide[])和鏈接的點(idv[])。還有乘法溢出的處理,寫成函數方便多了。debug
另外:code
1. 用dfn來替換dep徹底沒有問題,那之後就用dfn吧。2. 第二次DFS,要先去重兒子的路,這樣dfn[son[u]]=dfn[u]+1,son數組也省了。3. 代碼debug水平有待提高。4. 樹的建圖用vector就好了,不須要鄰接表(n-1條邊)。orm
#include <bits/stdc++.h> typedef long long ll; const int N = 2e5 + 5; const ll INF = 2e18; std::vector<std::pair<int, int> > edges[N]; int n, m; int dfn[N], fa[N], son[N], sz[N], belong[N]; ll ide[N]; int idv[N]; int tim; inline ll mul(ll a, ll b) { if (a != 0 && b > INF / a) return INF; return a * b; } void DFS2(int u, int chain) { dfn[u] = ++tim; belong[u] = chain; if (son[u] != 0) { DFS2 (son[u], chain); } for (auto e: edges[u]) { int v = e.first; if (v == fa[u] || v == son[u]) continue; DFS2 (v, v); } } void DFS1(int u, int pa) { sz[u] = 1; fa[u] = pa; for (auto e: edges[u]) { int v = e.first, id = e.second; if (v == pa) continue; idv[id] = v; DFS1 (v, u); if (sz[v] > sz[son[u]]) son[u] = v; sz[u] += sz[v]; } } #define lson l, mid, o << 1 #define rson mid + 1, r, o << 1 | 1 ll val[N<<2]; void push_up(int o) { val[o] = mul (val[o<<1], val[o<<1|1]); } void tree_updata(int p, ll c, int l, int r, int o) { if (l == r) { val[o] = c; return ; } int mid = l + r >> 1; if (p <= mid) tree_updata (p, c, lson); else tree_updata (p, c, rson); push_up (o); } ll tree_query(int ql, int qr, int l, int r, int o) { if (ql <= l && r <= qr) { return val[o]; } int mid = l + r >> 1; ll ret = 1; if (ql <= mid) ret = mul (ret, tree_query (ql, qr, lson)); if (qr > mid) ret = mul (ret, tree_query (ql, qr, rson)); return ret; } ll query(int a, int b) { ll ret = 1; int p = belong[a], q = belong[b]; while (p != q) { if (dfn[p] < dfn[q]) { std::swap (p, q); std::swap (a, b); } ret = mul (ret, tree_query (dfn[p], dfn[a], 1, n, 1)); a = fa[p]; p = belong[a]; } if (dfn[a] < dfn[b]) std::swap (a, b); if (a != b) { ret = mul (ret, tree_query (dfn[son[b]], dfn[a], 1, n, 1)); } return ret; } void modify(int id, ll c) { tree_updata (dfn[idv[id]], c, 1, n, 1); } void prepare() { DFS1 (1, 0); tim = 0; DFS2 (1, 1); for (int i=1; i<n; ++i) { tree_updata (dfn[idv[i]], ide[i], 1, n, 1); } } int main() { scanf ("%d%d", &n, &m); for (int i=1; i<n; ++i) { int u, v; ll w; scanf ("%d%d%I64d", &u, &v, &w); ide[i] = w; edges[u].push_back ({v, i}); edges[v].push_back ({u, i}); } prepare (); for (int i=0; i<m; ++i) { int t, a, b; ll c; scanf ("%d%d", &t, &a); if (t == 1) { scanf ("%d%I64d", &b, &c); printf ("%I64d\n", c / query (a, b)); } else { scanf ("%I64d", &c); modify (a, c); } } return 0; }