普通計算方式, 校驗每一個數字java
優化的幾處:算法
public class DemoPrime { private int[] primes; private int max; private int pos; private int total; public DemoPrime(int max) { this.max = max; int length = max / 3; primes = new int[length]; pos = 0; total = 0; } private void put(int prime) { primes[pos] = prime; if (pos < primes.length - 1) { pos++; } else { throw new RuntimeException("Length exceed"); } } private boolean isPrime(int num) { int limit = (int)Math.sqrt(num); for (int i = 0; i < pos; i++) { if (primes[i] > limit) { break; } total++; if (num % primes[i] == 0) return false; } return true; } public void calculate() { put(2); put(3); int val = 1; for (int i = 0; val <= max - 6;) { val += 4; if (isPrime(val)) { put(val); } val += 2; if (isPrime(val)) { put(val); } } System.out.println("Tried: " + total); } public void print() { System.out.println("Total: " + pos); /*for (int i = 0; i < pos; i++) { System.out.println(primes[i]); }*/ } public static void main(String[] args) { DemoPrime dp = new DemoPrime(10000000); dp.calculate(); dp.print(); } }
.使用數組填充的方式數組
一次性建立大小爲N的int數組的方式, 在每獲得一個素數時, 將其整數倍的下標(除自身之外)的元素都置位, 而且只須要遍歷到N的平方根處. 最後未置位的元素即爲素數, 在過程當中能夠統計素數個數. 這種方法比前一種效率高一個數量級.less
public class DemoPrime2 { private int[] cells; private int max; private int total; public DemoPrime2(int max) { this.max = max; cells = new int[max]; total = max; } private void put(int prime) { int i = prime + prime; while (i < max) { if (cells[i] == 0) { cells[i] = 1; total--; } i += prime; } } public void calculate() { total -= 2; // Exclude 0 and 1 put(2); put(3); int limit = (int)Math.sqrt(max); for (int i = 4; i <= limit; i++) { if (cells[i] == 0) { put(i); } } } public void print() { System.out.println("Total: " + total); /*for (int i = 2; i < max; i++) { if (cells[i] == 0) { System.out.println(i); } }*/ } public static void main(String[] args) throws InterruptedException { DemoPrime2 dp = new DemoPrime2(10000000); Thread.sleep(1000L); long ts = System.currentTimeMillis(); dp.calculate(); dp.print(); long elapse = System.currentTimeMillis() - ts; System.out.println("Time: " + elapse); } }
.ide
Miller-Rabin算法測試
對於大數的素性判斷,目前Miller-Rabin算法應用最普遍。通常底數仍然是隨機選取,但當待測數不太大時,選擇測試底數就有一些技巧了。好比,若是被測數小於4 759 123 141,那麼只須要測試三個底數2, 7和61就足夠了。固然,你測試的越多,正確的範圍確定也越大。若是你每次都用前7個素數(2, 3, 5, 7, 11, 13和17)進行測試,全部不超過341 550 071 728 320的數都是正確的。若是選用2, 3, 7, 61和24251做爲底數,那麼10^16內惟一的強僞素數爲46 856 248 255 981。這樣的一些結論使得Miller-Rabin算法在OI中很是實用。一般認爲,Miller-Rabin素性測試的正確率能夠使人接受,隨機選取k個底數進行測試算法的失誤率大概爲4^(-k)。優化
Miller-Rabin算法是一個RP算法。RP是時間複雜度的一種,主要針對斷定性問題。一個算法是RP算法代表它能夠在多項式的時間裏完成,對於答案爲否認的情形可以準確作出判斷,但同時它也有可能把對的判成錯的(錯誤機率不能超過1/2)。RP算法是基於隨機化的,所以屢次運行該算法能夠下降錯誤率。還有其它的素性測試算法也是機率型的,好比Solovay-Strassen算法.this
AKS算法orm
AKS最關鍵的重要性在於它是第一個被髮表的通常的、多項式的、肯定性的和無仰賴的素數斷定算法。先前的算法至多達到了其中三點,但從未達到所有四個。blog
AKS算法的時間複雜度是 O(log(n)), 比Miller-Rabin要慢
/*************************************************************************** * Team ************** * Arijit Banerjee * Suchit Maindola * Srikanth Manikarnike * ************** * This is am implementation of Agrawal–Kayal–Saxena primality test in java. * ************** * The algorithm is - * 1. l <- log n * 2. for i<-2 to l * a. if an is a power fo l * return COMPOSITE * 3. r <- 2 * 4. while r < n * a. if gcd( r, n) != 1 * return COMPSITE * b. if sieve marked n as PRIME * q <- largest factor (r-1) * o < - r-1 / q * k <- 4*sqrt(r) * l * if q > k and n <= r * return PRIME * c. x = 2 * d. for a <- 1 to k * if (x + a) ^n != x^n + mod (x^r - 1, n) * return COMPOSITE * e. return PRIME */ public class DemoAKS { private int log; private boolean sieveArray[]; private int SIEVE_ERATOS_SIZE = 100000000; /* aks constructor */ public DemoAKS(BigInteger input) { sieveEratos(); boolean result = checkIsPrime(input); if (result) { System.out.println("1"); } else { System.out.println("0"); } } /* function to check if a given number is prime or not */ public boolean checkIsPrime(BigInteger n) { BigInteger lowR, powOf, x, leftH, rightH, fm, aBigNum; int totR, quot, tm, aCounter, aLimit, divisor; log = (int) logBigNum(n); if (findPower(n, log)) { return false; } lowR = new BigInteger("2"); x = lowR; totR = lowR.intValue(); for (lowR = new BigInteger("2"); lowR.compareTo(n) < 0; lowR = lowR.add(BigInteger.ONE)) { if ((lowR.gcd(n)).compareTo(BigInteger.ONE) != 0) { return false; } totR = lowR.intValue(); if (checkIsSievePrime(totR)) { quot = largestFactor(totR - 1); divisor = (int) (totR - 1) / quot; tm = (int) (4 * (Math.sqrt(totR)) * log); powOf = mPower(n, new BigInteger("" + divisor), lowR); if (quot >= tm && (powOf.compareTo(BigInteger.ONE)) != 0) { break; } } } fm = (mPower(x, lowR, n)).subtract(BigInteger.ONE); aLimit = (int) (2 * Math.sqrt(totR) * log); for (aCounter = 1; aCounter < aLimit; aCounter++) { aBigNum = new BigInteger("" + aCounter); leftH = (mPower(x.subtract(aBigNum), n, n)).mod(n); rightH = (mPower(x, n, n).subtract(aBigNum)).mod(n); if (leftH.compareTo(rightH) != 0) return false; } return true; } /* function that computes the log of a big number*/ public double logBigNum(BigInteger bNum) { String str; int len; double num1, num2; str = "." + bNum.toString(); len = str.length() - 1; num1 = Double.parseDouble(str); num2 = Math.log10(num1) + len; return num2; } /*function that computes the log of a big number input in string format*/ public double logBigNum(String str) { String s; int len; double num1, num2; len = str.length(); s = "." + str; num1 = Double.parseDouble(s); num2 = Math.log10(num1) + len; return num2; } /* function to compute the largest factor of a number */ public int largestFactor(int num) { int i; i = num; if (i == 1) return i; while (i > 1) { while (sieveArray[i] == true) { i--; } if (num % i == 0) { return i; } i--; } return num; } /*function given a and b, computes if a is power of b */ public boolean findPowerOf(BigInteger bNum, int val) { int l; double len; BigInteger low, high, mid, res; low = new BigInteger("10"); high = new BigInteger("10"); len = (bNum.toString().length()) / val; l = (int) Math.ceil(len); low = low.pow(l - 1); high = high.pow(l).subtract(BigInteger.ONE); while (low.compareTo(high) <= 0) { mid = low.add(high); mid = mid.divide(new BigInteger("2")); res = mid.pow(val); if (res.compareTo(bNum) < 0) { low = mid.add(BigInteger.ONE); } else if (res.compareTo(bNum) > 0) { high = mid.subtract(BigInteger.ONE); } else if (res.compareTo(bNum) == 0) { return true; } } return false; } /* creates a sieve array that maintains a table for COMPOSITE-ness * or possibly PRIME state for all values less than SIEVE_ERATOS_SIZE */ public boolean checkIsSievePrime(int val) { if (sieveArray[val] == false) { return true; } else { return false; } } long mPower(long x, long y, long n) { long m, p, z; m = y; p = 1; z = x; while (m > 0) { while (m % 2 == 0) { m = (long) m / 2; z = (z * z) % n; } m = m - 1; p = (p * z) % n; } return p; } /* function, given a and b computes if a is a power of b */ boolean findPower(BigInteger n, int l) { int i; for (i = 2; i < l; i++) { if (findPowerOf(n, i)) { return true; } } return false; } BigInteger mPower(BigInteger x, BigInteger y, BigInteger n) { BigInteger m, p, z, two; m = y; p = BigInteger.ONE; z = x; two = new BigInteger("2"); while (m.compareTo(BigInteger.ZERO) > 0) { while (((m.mod(two)).compareTo(BigInteger.ZERO)) == 0) { m = m.divide(two); z = (z.multiply(z)).mod(n); } m = m.subtract(BigInteger.ONE); p = (p.multiply(z)).mod(n); } return p; } /* array to populate sieve array * the sieve array looks like this * * y index -> 0 1 2 3 4 5 6 ... n * x index 1 * | 2 T - T - T ... * \/ 3 T - - T ... * 4 T - - ... * . T - ... * . T ... * n * * * * */ public void sieveEratos() { int i, j; sieveArray = new boolean[SIEVE_ERATOS_SIZE + 1]; sieveArray[1] = true; for (i = 2; i * i <= SIEVE_ERATOS_SIZE; i++) { if (!sieveArray[i]) { for (j = i * i; j <= SIEVE_ERATOS_SIZE; j += i) { sieveArray[j] = true; } } } } public static void main(String[] args) { new DemoAKS(new BigInteger("100000217")); } }