//輸入32x32 3通道圖片 auto input = torch::rand({ 1,3,32,32 }); //輸出 auto output_bilinear = torch::upsample_bilinear2d(input, { 8,8 }, false); auto output_nearest = torch::upsample_nearest2d(input, { 5,5 }); auto output_avg = torch::adaptive_avg_pool2d(input, { 3,9 }); std::cout << output_bilinear << std::endl; std::cout << output_nearest << std::endl; std::cout << output_avg << std::endl;
libtorch 加載 pytorch 模塊進行預測示例ios
void mat2tensor(const char * path, torch::Tensor &output) { //讀取圖片 cv::Mat img = cv::imread(path); if (img.empty()) { printf("load image failed!"); system("pause"); } //調整大小 cv::resize(img, img, { 224,224 }); cv::cvtColor(img, img, cv::COLOR_BGR2RGB); //浮點 img.convertTo(img, CV_32F, 1.0 / 255.0); torch::TensorOptions option(torch::kFloat32); auto img_tensor = torch::from_blob(img.data, { 1,img.rows,img.cols,img.channels() }, option);// opencv H x W x C torch C x H x W img_tensor = img_tensor.permute({ 0,3,1,2 });// 調整 opencv 矩陣的維度使其和 torch 維度一致 //均值歸一化 img_tensor[0][0] = img_tensor[0][0].sub_(0.485).div_(0.229); img_tensor[0][1] = img_tensor[0][1].sub_(0.456).div_(0.224); img_tensor[0][2] = img_tensor[0][2].sub_(0.406).div_(0.225); output = img_tensor.clone(); } int main() { torch::Tensor dog; mat2tensor("dog.png", dog); // Load model. std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("model.pt"); assert(module != nullptr); std::cout << "ok\r\n" << std::endl; // Create a vector of inputs. std::vector<torch::jit::IValue> inputs; torch::Tensor tensor = torch::rand({ 1, 3, 224, 224 }); inputs.push_back(dog); // Execute the model and turn its output into a tensor. at::Tensor output = module->forward(inputs).toTensor(); //加載標籤文件 std::string label_file = "synset_words.txt"; std::fstream fs(label_file, std::ios::in); if (!fs.is_open()) { printf("label open failed!\r\n"); system("pause"); } std::string line; std::vector<std::string> labels; while (std::getline(fs,line)) { labels.push_back(line); } //排序 {1,1000} 矩陣取前10個元素(預測值),返回一個矩陣和一個矩陣的下標索引 std::tuple<torch::Tensor,torch::Tensor> result = output.topk(10, -1); auto top_scores = std::get<0>(result).view(-1);//{1,10} 變成 {10} auto top_idxs = std::get<1>(result).view(-1); std::cout << top_scores << "\r\n" << top_idxs << std::endl; //打印結果 for (int i = 0; i < 10; ++i) { std::cout << "score: " << top_scores[i].item().toFloat() << "\t" << "label: " << labels[top_idxs[i].item().toInt()] << std::endl; } system("pause"); return 0; ]
torch::sort
rest
torch::Tensor x = torch::rand({ 3,3 }); std::cout << x << std::endl; //排序操做 true 大到小排序,false 小到大排序 auto out = x.sort(-1, true); std::cout << std::get<0>(out) << "\r\n" << std::get<1>(out) << std::endl;
輸出以下:code
0.0855 0.4925 0.4323 0.8314 0.8954 0.0709 0.0996 0.3108 0.6845 [ Variable[CPUFloatType]{3,3} ] 0.4925 0.4323 0.0855 0.8954 0.8314 0.0709 0.6845 0.3108 0.0996 [ Variable[CPUFloatType]{3,3} ] 1 2 0 1 0 2 2 1 0 [ Variable[CPULongType]{3,3} ]