專欄地址:每週一個 Python 模塊html
multiprocessing 是 Python 的標準模塊,它既能夠用來編寫多進程,也能夠用來編寫多線程。若是是多線程的話,用 multiprocessing.dummy 便可,用法與 multiprocessing 基本相同。python
利用 multiprocessing.Process 對象能夠建立一個進程,Process 對象與 Thread 對象的用法相同,也有 start()
, run()
, join()
等方法。Process 類適合簡單的進程建立,如需資源共享能夠結合 multiprocessing.Queue 使用;若是想要控制進程數量,則建議使用進程池 Pool 類。git
Process 介紹:github
構造方法:bootstrap
實例方法:服務器
屬性:網絡
下面看一個簡單的例子:多線程
import multiprocessing
def worker():
"""worker function"""
print('Worker')
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target=worker)
jobs.append(p)
p.start()
# 輸出
# Worker
# Worker
# Worker
# Worker
# Worker
複製代碼
輸出結果是打印了五次 Worker,咱們並不知道哪一個 Worker 是由哪一個進程打印的,具體取決於執行順序,由於每一個進程都在競爭訪問輸出流。併發
那怎樣才能知道具體執行順序呢?能夠經過給進程傳參來實現。與 threading 不一樣,傳遞給 multiprocessing
Process
的參數必需是可序列化的,來看一下代碼:app
import multiprocessing
def worker(num):
"""thread worker function"""
print('Worker:', num)
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target=worker, args=(i,))
jobs.append(p)
p.start()
# 輸出
# Worker: 1
# Worker: 0
# Worker: 2
# Worker: 3
# Worker: 4
複製代碼
threading 和 multiprocessing 的一處區別是在 __main__
中使用時的額外保護。因爲進程已經啓動,子進程須要可以導入包含目標函數的腳本。在 __main__
中包裝應用程序的主要部分,可確保在導入模塊時不會在每一個子項中遞歸運行它。另外一種方法是從單獨的腳本導入目標函數。例如:multiprocessing_import_main.py
使用在第二個模塊中定義的 worker 函數。
# multiprocessing_import_main.py
import multiprocessing
import multiprocessing_import_worker
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(
target=multiprocessing_import_worker.worker,
)
jobs.append(p)
p.start()
# 輸出
# Worker
# Worker
# Worker
# Worker
# Worker
複製代碼
worker 函數定義於multiprocessing_import_worker.py
。
# multiprocessing_import_worker.py
def worker():
"""worker function"""
print('Worker')
return
複製代碼
傳參來識別或命名進程很是麻煩,也沒必要要。每一個Process
實例都有一個名稱,其默認值能夠在建立進程時更改。命名進程對於跟蹤它們很是有用,尤爲是在同時運行多種類型進程的應用程序中。
import multiprocessing
import time
def worker():
name = multiprocessing.current_process().name
print(name, 'Starting')
time.sleep(2)
print(name, 'Exiting')
def my_service():
name = multiprocessing.current_process().name
print(name, 'Starting')
time.sleep(3)
print(name, 'Exiting')
if __name__ == '__main__':
service = multiprocessing.Process(
name='my_service',
target=my_service,
)
worker_1 = multiprocessing.Process(
name='worker 1',
target=worker,
)
worker_2 = multiprocessing.Process( # default name
target=worker,
)
worker_1.start()
worker_2.start()
service.start()
# output
# worker 1 Starting
# worker 1 Exiting
# Process-3 Starting
# Process-3 Exiting
# my_service Starting
# my_service Exiting
複製代碼
默認狀況下,在全部子進程退出以前,主程序不會退出。有些時候,啓動後臺進程運行而不阻止主程序退出是有用的,例如爲監視工具生成「心跳」的任務。
要將進程標記爲守護程序很簡單,只要將daemon
屬性設置爲 True
就能夠了。
import multiprocessing
import time
import sys
def daemon():
p = multiprocessing.current_process()
print('Starting:', p.name, p.pid)
sys.stdout.flush()
time.sleep(2)
print('Exiting :', p.name, p.pid)
sys.stdout.flush()
def non_daemon():
p = multiprocessing.current_process()
print('Starting:', p.name, p.pid)
sys.stdout.flush()
print('Exiting :', p.name, p.pid)
sys.stdout.flush()
if __name__ == '__main__':
d = multiprocessing.Process(
name='daemon',
target=daemon,
)
d.daemon = True
n = multiprocessing.Process(
name='non-daemon',
target=non_daemon,
)
n.daemon = False
d.start()
time.sleep(1)
n.start()
# output
# Starting: daemon 41838
# Starting: non-daemon 41841
# Exiting : non-daemon 41841
複製代碼
輸出不包括來自守護進程的「退出」消息,由於全部非守護進程(包括主程序)在守護進程從兩秒休眠狀態喚醒以前退出。
守護進程在主程序退出以前自動終止,這避免了孤立進程的運行。這能夠經過查找程序運行時打印的進程 ID 值來驗證,而後使用 ps
命令檢查該進程。
要等到進程完成其工做並退出,請使用 join()
方法。
import multiprocessing
import time
import sys
def daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
time.sleep(2)
print('Exiting :', name)
def non_daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
print('Exiting :', name)
if __name__ == '__main__':
d = multiprocessing.Process(
name='daemon',
target=daemon,
)
d.daemon = True
n = multiprocessing.Process(
name='non-daemon',
target=non_daemon,
)
n.daemon = False
d.start()
time.sleep(1)
n.start()
d.join()
n.join()
# output
# Starting: non-daemon
# Exiting : non-daemon
# Starting: daemon
# Exiting : daemon
複製代碼
因爲主進程使用 join()
等待守護進程退出,所以此時將打印「退出」消息。
默認狀況下,join()
無限期地阻止。也能夠傳遞一個超時參數(一個浮點數表示等待進程變爲非活動狀態的秒數)。若是進程未在超時期限內完成,則join()
不管如何都要返回。
import multiprocessing
import time
import sys
def daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
time.sleep(2)
print('Exiting :', name)
def non_daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
print('Exiting :', name)
if __name__ == '__main__':
d = multiprocessing.Process(
name='daemon',
target=daemon,
)
d.daemon = True
n = multiprocessing.Process(
name='non-daemon',
target=non_daemon,
)
n.daemon = False
d.start()
n.start()
d.join(1)
print('d.is_alive()', d.is_alive())
n.join()
# output
# Starting: non-daemon
# Exiting : non-daemon
# d.is_alive() True
複製代碼
因爲傳遞的超時時間小於守護進程休眠的時間,所以join()
返回後進程仍處於「活動」狀態。
若是想讓一個進程退出,最好使用「poison pill」方法向它發送信號,若是進程出現掛起或死鎖,那麼強制終止它是有用的。 調用 terminate()
來殺死子進程。
import multiprocessing
import time
def slow_worker():
print('Starting worker')
time.sleep(0.1)
print('Finished worker')
if __name__ == '__main__':
p = multiprocessing.Process(target=slow_worker)
print('BEFORE:', p, p.is_alive())
p.start()
print('DURING:', p, p.is_alive())
p.terminate()
print('TERMINATED:', p, p.is_alive())
p.join()
print('JOINED:', p, p.is_alive())
# output
# BEFORE: <Process(Process-1, initial)> False
# DURING: <Process(Process-1, started)> True
# TERMINATED: <Process(Process-1, started)> True
# JOINED: <Process(Process-1, stopped[SIGTERM])> False
複製代碼
在終止它以後對該進程使用 join()
很重要,能夠爲進程管理代碼提供時間來更新對象狀態,用以反映終止效果。
能夠經過exitcode
屬性訪問進程退出時生成的狀態代碼。容許的範圍列於下表中。
退出代碼 | 含義 |
---|---|
== 0 |
沒有產生錯誤 |
> 0 |
該進程出錯,並退出該代碼 |
< 0 |
這個過程被一個信號殺死了 -1 * exitcode |
import multiprocessing
import sys
import time
def exit_error():
sys.exit(1)
def exit_ok():
return
def return_value():
return 1
def raises():
raise RuntimeError('There was an error!')
def terminated():
time.sleep(3)
if __name__ == '__main__':
jobs = []
funcs = [
exit_error,
exit_ok,
return_value,
raises,
terminated,
]
for f in funcs:
print('Starting process for', f.__name__)
j = multiprocessing.Process(target=f, name=f.__name__)
jobs.append(j)
j.start()
jobs[-1].terminate()
for j in jobs:
j.join()
print('{:>15}.exitcode = {}'.format(j.name, j.exitcode))
# output
# Starting process for exit_error
# Starting process for exit_ok
# Starting process for return_value
# Starting process for raises
# Starting process for terminated
# Process raises:
# Traceback (most recent call last):
# File ".../lib/python3.6/multiprocessing/process.py", line 258,
# in _bootstrap
# self.run()
# File ".../lib/python3.6/multiprocessing/process.py", line 93,
# in run
# self._target(*self._args, **self._kwargs)
# File "multiprocessing_exitcode.py", line 28, in raises
# raise RuntimeError('There was an error!')
# RuntimeError: There was an error!
# exit_error.exitcode = 1
# exit_ok.exitcode = 0
# return_value.exitcode = 0
# raises.exitcode = 1
# terminated.exitcode = -15
複製代碼
在調試併發問題時,訪問 multiprocessing
對象的內部結構頗有用。有一個方便的模塊級功能來啓用被調用的日誌,叫 log_to_stderr()
。它使用logging
並添加處理程序來設置記錄器對象 ,以便將日誌消息發送到標準錯誤通道。
import multiprocessing
import logging
import sys
def worker():
print('Doing some work')
sys.stdout.flush()
if __name__ == '__main__':
multiprocessing.log_to_stderr(logging.DEBUG)
p = multiprocessing.Process(target=worker)
p.start()
p.join()
# output
# [INFO/Process-1] child process calling self.run()
# Doing some work
# [INFO/Process-1] process shutting down
# [DEBUG/Process-1] running all "atexit" finalizers with priority >= 0
# [DEBUG/Process-1] running the remaining "atexit" finalizers
# [INFO/Process-1] process exiting with exitcode 0
# [INFO/MainProcess] process shutting down
# [DEBUG/MainProcess] running all "atexit" finalizers with priority >= 0
# [DEBUG/MainProcess] running the remaining "atexit" finalizers
複製代碼
默認狀況下,日誌記錄級別設置爲NOTSET
不生成任何消息。傳遞不一樣的級別以將記錄器初始化爲所需的詳細程度。
要直接操做記錄器(更改其級別設置或添加處理程序),請使用get_logger()
。
import multiprocessing
import logging
import sys
def worker():
print('Doing some work')
sys.stdout.flush()
if __name__ == '__main__':
multiprocessing.log_to_stderr()
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
p = multiprocessing.Process(target=worker)
p.start()
p.join()
# output
# [INFO/Process-1] child process calling self.run()
# Doing some work
# [INFO/Process-1] process shutting down
# [INFO/Process-1] process exiting with exitcode 0
# [INFO/MainProcess] process shutting down
複製代碼
雖然在單獨的進程中啓動子進程的最簡單方法是使用Process
並傳遞目標函數,但也可使用自定義子類。
import multiprocessing
class Worker(multiprocessing.Process):
def run(self):
print('In {}'.format(self.name))
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()
# output
# In Worker-1
# In Worker-3
# In Worker-2
# In Worker-4
# In Worker-5
複製代碼
派生類應該重寫run()
以完成其工做。
與線程同樣,多個進程的常見使用模式是將做業劃分爲多個工做並行運行。有效使用多個流程一般須要在它們之間進行一些通訊,以即可以劃分工做並彙總結果。在進程之間通訊的一種簡單方法是使用 Queue
來傳遞消息。任何能夠經過 pickle
序列化的對象均可以傳遞給 Queue
。
import multiprocessing
class MyFancyClass:
def __init__(self, name):
self.name = name
def do_something(self):
proc_name = multiprocessing.current_process().name
print('Doing something fancy in {} for {}!'.format(proc_name, self.name))
def worker(q):
obj = q.get()
obj.do_something()
if __name__ == '__main__':
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=worker, args=(queue,))
p.start()
queue.put(MyFancyClass('Fancy Dan'))
# Wait for the worker to finish
queue.close()
queue.join_thread()
p.join()
# output
# Doing something fancy in Process-1 for Fancy Dan!
複製代碼
這個簡短的示例僅將單個消息傳遞給單個工做程序,而後主進程等待工做程序完成。
下面看一個更復雜例子,它顯示瞭如何管理多個從 JoinableQueue
消耗數據的 worker,並將結果傳遞迴父進程。「poison pill」技術用來終止 workers。設置實際任務後,主程序會將每一個工做程序的一個「中止」值添加到隊列中。當 worker 遇到特殊值時,它會從循環中跳出。主進程使用任務隊列的join()
方法在處理結果以前等待全部任務完成。
import multiprocessing
import time
class Consumer(multiprocessing.Process):
def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue
def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
# Poison pill means shutdown
print('{}: Exiting'.format(proc_name))
self.task_queue.task_done()
break
print('{}: {}'.format(proc_name, next_task))
answer = next_task()
self.task_queue.task_done()
self.result_queue.put(answer)
class Task:
def __init__(self, a, b):
self.a = a
self.b = b
def __call__(self):
time.sleep(0.1) # pretend to take time to do the work
return '{self.a} * {self.b} = {product}'.format(
self=self, product=self.a * self.b)
def __str__(self):
return '{self.a} * {self.b}'.format(self=self)
if __name__ == '__main__':
# Establish communication queues
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()
# Start consumers
num_consumers = multiprocessing.cpu_count() * 2
print('Creating {} consumers'.format(num_consumers))
consumers = [
Consumer(tasks, results)
for i in range(num_consumers)
]
for w in consumers:
w.start()
# Enqueue jobs
num_jobs = 10
for i in range(num_jobs):
tasks.put(Task(i, i))
# Add a poison pill for each consumer
for i in range(num_consumers):
tasks.put(None)
# Wait for all of the tasks to finish
tasks.join()
# Start printing results
while num_jobs:
result = results.get()
print('Result:', result)
num_jobs -= 1
# output
# Creating 8 consumers
# Consumer-1: 0 * 0
# Consumer-2: 1 * 1
# Consumer-3: 2 * 2
# Consumer-4: 3 * 3
# Consumer-5: 4 * 4
# Consumer-6: 5 * 5
# Consumer-7: 6 * 6
# Consumer-8: 7 * 7
# Consumer-3: 8 * 8
# Consumer-7: 9 * 9
# Consumer-4: Exiting
# Consumer-1: Exiting
# Consumer-2: Exiting
# Consumer-5: Exiting
# Consumer-6: Exiting
# Consumer-8: Exiting
# Consumer-7: Exiting
# Consumer-3: Exiting
# Result: 6 * 6 = 36
# Result: 2 * 2 = 4
# Result: 3 * 3 = 9
# Result: 0 * 0 = 0
# Result: 1 * 1 = 1
# Result: 7 * 7 = 49
# Result: 4 * 4 = 16
# Result: 5 * 5 = 25
# Result: 8 * 8 = 64
# Result: 9 * 9 = 81
複製代碼
儘管做業按順序進入隊列,但它們的執行是並行化的,所以沒法保證它們的完成順序。
Event
類提供一種簡單的方式進行進程之間的通訊。能夠在設置和未設置狀態之間切換事件。事件對象的用戶可使用可選的超時值等待它從未設置更改成設置。
import multiprocessing
import time
def wait_for_event(e):
"""Wait for the event to be set before doing anything"""
print('wait_for_event: starting')
e.wait()
print('wait_for_event: e.is_set()->', e.is_set())
def wait_for_event_timeout(e, t):
"""Wait t seconds and then timeout"""
print('wait_for_event_timeout: starting')
e.wait(t)
print('wait_for_event_timeout: e.is_set()->', e.is_set())
if __name__ == '__main__':
e = multiprocessing.Event()
w1 = multiprocessing.Process(
name='block',
target=wait_for_event,
args=(e,),
)
w1.start()
w2 = multiprocessing.Process(
name='nonblock',
target=wait_for_event_timeout,
args=(e, 2),
)
w2.start()
print('main: waiting before calling Event.set()')
time.sleep(3)
e.set()
print('main: event is set')
# output
# main: waiting before calling Event.set()
# wait_for_event: starting
# wait_for_event_timeout: starting
# wait_for_event_timeout: e.is_set()-> False
# main: event is set
# wait_for_event: e.is_set()-> True
複製代碼
若是wait()
超時,不會返回錯誤。調用者可使用 is_set()
檢查事件的狀態。
在多個進程之間共享單個資源的狀況下,能夠用 Lock
來避免訪問衝突。
import multiprocessing
import sys
def worker_with(lock, stream):
with lock:
stream.write('Lock acquired via with\n')
def worker_no_with(lock, stream):
lock.acquire()
try:
stream.write('Lock acquired directly\n')
finally:
lock.release()
lock = multiprocessing.Lock()
w = multiprocessing.Process(
target=worker_with,
args=(lock, sys.stdout),
)
nw = multiprocessing.Process(
target=worker_no_with,
args=(lock, sys.stdout),
)
w.start()
nw.start()
w.join()
nw.join()
# output
# Lock acquired via with
# Lock acquired directly
複製代碼
在此示例中,若是兩個進程不一樣步它們對標準輸出的訪問與鎖定,則打印到控制檯的消息可能混雜在一塊兒。
Condition
對象可用於同步工做流的一部分,可使某些對象並行運行,但其餘對象順序運行,即便它們位於不一樣的進程中。
import multiprocessing
import time
def stage_1(cond):
""" perform first stage of work, then notify stage_2 to continue """
name = multiprocessing.current_process().name
print('Starting', name)
with cond:
print('{} done and ready for stage 2'.format(name))
cond.notify_all()
def stage_2(cond):
"""wait for the condition telling us stage_1 is done"""
name = multiprocessing.current_process().name
print('Starting', name)
with cond:
cond.wait()
print('{} running'.format(name))
if __name__ == '__main__':
condition = multiprocessing.Condition()
s1 = multiprocessing.Process(name='s1',
target=stage_1,
args=(condition,))
s2_clients = [
multiprocessing.Process(
name='stage_2[{}]'.format(i),
target=stage_2,
args=(condition,),
)
for i in range(1, 3)
]
for c in s2_clients:
c.start()
time.sleep(1)
s1.start()
s1.join()
for c in s2_clients:
c.join()
# output
# Starting stage_2[1]
# Starting stage_2[2]
# Starting s1
# s1 done and ready for stage 2
# stage_2[1] running
# stage_2[2] running
複製代碼
在此示例中,兩個進程並行運行 stage_2
,但僅在 stage_1
完成後運行。
有時,容許多個 worker 同時訪問資源是有用的,同時仍限制總數。例如,鏈接池可能支持固定數量的併發鏈接,或者網絡應用程序可能支持固定數量的併發下載。Semaphore
是管理這些鏈接的一種方法。
import random
import multiprocessing
import time
class ActivePool:
def __init__(self):
super(ActivePool, self).__init__()
self.mgr = multiprocessing.Manager()
self.active = self.mgr.list()
self.lock = multiprocessing.Lock()
def makeActive(self, name):
with self.lock:
self.active.append(name)
def makeInactive(self, name):
with self.lock:
self.active.remove(name)
def __str__(self):
with self.lock:
return str(self.active)
def worker(s, pool):
name = multiprocessing.current_process().name
with s:
pool.makeActive(name)
print('Activating {} now running {}'.format(name, pool))
time.sleep(random.random())
pool.makeInactive(name)
if __name__ == '__main__':
pool = ActivePool()
s = multiprocessing.Semaphore(3)
jobs = [
multiprocessing.Process(
target=worker,
name=str(i),
args=(s, pool),
)
for i in range(10)
]
for j in jobs:
j.start()
while True:
alive = 0
for j in jobs:
if j.is_alive():
alive += 1
j.join(timeout=0.1)
print('Now running {}'.format(pool))
if alive == 0:
# all done
break
# output
# Activating 0 now running ['0', '1', '2']
# Activating 1 now running ['0', '1', '2']
# Activating 2 now running ['0', '1', '2']
# Now running ['0', '1', '2']
# Now running ['0', '1', '2']
# Now running ['0', '1', '2']
# Now running ['0', '1', '2']
# Activating 3 now running ['0', '1', '3']
# Activating 4 now running ['1', '3', '4']
# Activating 6 now running ['1', '4', '6']
# Now running ['1', '4', '6']
# Now running ['1', '4', '6']
# Activating 5 now running ['1', '4', '5']
# Now running ['1', '4', '5']
# Now running ['1', '4', '5']
# Now running ['1', '4', '5']
# Activating 8 now running ['4', '5', '8']
# Now running ['4', '5', '8']
# Now running ['4', '5', '8']
# Now running ['4', '5', '8']
# Now running ['4', '5', '8']
# Now running ['4', '5', '8']
# Activating 7 now running ['5', '8', '7']
# Now running ['5', '8', '7']
# Activating 9 now running ['8', '7', '9']
# Now running ['8', '7', '9']
# Now running ['8', '9']
# Now running ['8', '9']
# Now running ['9']
# Now running ['9']
# Now running ['9']
# Now running ['9']
# Now running []
複製代碼
在此示例中,ActivePool
類僅用做跟蹤在給定時刻正在運行的進程的便捷方式。實際資源池可能會爲新活動的進程分配鏈接或其餘值,並在任務完成時回收該值。這裏,pool 只用於保存活動進程的名稱,以顯示只有三個併發運行。
在前面的示例中,首先經過 Manager
建立特殊類型的列表,而後活動進程列表經過 ActivePool
在實例中集中維護。Manager
負責協調全部用戶之間共享信息的狀態。
import multiprocessing
import pprint
def worker(d, key, value):
d[key] = value
if __name__ == '__main__':
mgr = multiprocessing.Manager()
d = mgr.dict()
jobs = [
multiprocessing.Process(
target=worker,
args=(d, i, i * 2),
)
for i in range(10)
]
for j in jobs:
j.start()
for j in jobs:
j.join()
print('Results:', d)
# output
# Results: {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18}
複製代碼
經過管理器建立列表,它將被共享,而且能夠在全部進程中看到更新。字典也支持。
除了字典和列表,Manager
還能夠建立共享Namespace
。
import multiprocessing
def producer(ns, event):
ns.value = 'This is the value'
event.set()
def consumer(ns, event):
try:
print('Before event: {}'.format(ns.value))
except Exception as err:
print('Before event, error:', str(err))
event.wait()
print('After event:', ns.value)
if __name__ == '__main__':
mgr = multiprocessing.Manager()
namespace = mgr.Namespace()
event = multiprocessing.Event()
p = multiprocessing.Process(
target=producer,
args=(namespace, event),
)
c = multiprocessing.Process(
target=consumer,
args=(namespace, event),
)
c.start()
p.start()
c.join()
p.join()
# output
# Before event, error: 'Namespace' object has no attribute 'value'
# After event: This is the value
複製代碼
只要添加到命名空間Namespace
,那麼全部接收Namespace
實例的客戶端均可見。
重要的是,要知道命名空間中可變值內容的更新不會自動傳播。
import multiprocessing
def producer(ns, event):
# DOES NOT UPDATE GLOBAL VALUE!
ns.my_list.append('This is the value')
event.set()
def consumer(ns, event):
print('Before event:', ns.my_list)
event.wait()
print('After event :', ns.my_list)
if __name__ == '__main__':
mgr = multiprocessing.Manager()
namespace = mgr.Namespace()
namespace.my_list = []
event = multiprocessing.Event()
p = multiprocessing.Process(
target=producer,
args=(namespace, event),
)
c = multiprocessing.Process(
target=consumer,
args=(namespace, event),
)
c.start()
p.start()
c.join()
p.join()
# output
# Before event: []
# After event : []
複製代碼
要更新列表,須要再次將其添加到命名空間。
Pool
類可用於管理固定數量 workers 的簡單狀況。返回值做爲列表返回。Pool
參數包括進程數和啓動任務進程時要運行的函數(每一個子進程調用一次)。
import multiprocessing
def do_calculation(data):
return data * 2
def start_process():
print('Starting', multiprocessing.current_process().name)
if __name__ == '__main__':
inputs = list(range(10))
print('Input :', inputs)
builtin_outputs = map(do_calculation, inputs)
print('Built-in:', builtin_outputs)
pool_size = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(
processes=pool_size,
initializer=start_process,
)
pool_outputs = pool.map(do_calculation, inputs)
pool.close() # no more tasks
pool.join() # wrap up current tasks
print('Pool :', pool_outputs)
# output
# Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# Built-in: <map object at 0x1007b2be0>
# Starting ForkPoolWorker-3
# Starting ForkPoolWorker-4
# Starting ForkPoolWorker-5
# Starting ForkPoolWorker-6
# Starting ForkPoolWorker-1
# Starting ForkPoolWorker-7
# Starting ForkPoolWorker-2
# Starting ForkPoolWorker-8
# Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
複製代碼
除了各個任務並行運行外,map()
方法的結果在功能上等同於內置map()
。因爲 Pool
並行處理其輸入,close()
和 join()
可用於主處理與任務進程進行同步,以確保徹底清除。
默認狀況下,Pool
建立固定數量的工做進程並將 jobs 傳遞給它們,直到沒有其餘 jobs 爲止。設置 maxtasksperchild
參數會告訴 Pool
在完成一些任務後從新啓動工做進程,從而防止長時間運行 workers 消耗更多的系統資源。
import multiprocessing
def do_calculation(data):
return data * 2
def start_process():
print('Starting', multiprocessing.current_process().name)
if __name__ == '__main__':
inputs = list(range(10))
print('Input :', inputs)
builtin_outputs = map(do_calculation, inputs)
print('Built-in:', builtin_outputs)
pool_size = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(
processes=pool_size,
initializer=start_process,
maxtasksperchild=2,
)
pool_outputs = pool.map(do_calculation, inputs)
pool.close() # no more tasks
pool.join() # wrap up current tasks
print('Pool :', pool_outputs)
# output
# Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# Built-in: <map object at 0x1007b21d0>
# Starting ForkPoolWorker-1
# Starting ForkPoolWorker-2
# Starting ForkPoolWorker-4
# Starting ForkPoolWorker-5
# Starting ForkPoolWorker-6
# Starting ForkPoolWorker-3
# Starting ForkPoolWorker-7
# Starting ForkPoolWorker-8
# Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
複製代碼
即便沒有更多工做,Pool
也會在完成分配的任務後從新啓動 workers。在此輸出中,即便只有 10 個任務,也會建立 8 個 workers,而且每一個 worker 能夠一次完成其中兩個任務。
Pool
類能夠用來建立一個簡單的單臺服務器的 MapReduce 實現。雖然它沒有給出分佈式處理的所有好處,但它確實說明了將一些問題分解爲可分配的工做單元是多麼容易。
在基於 MapReduce 的系統中,輸入數據被分解爲塊以供不一樣的工做實例處理。使用簡單的變換將每一個輸入數據塊 映射到中間狀態。而後將中間數據收集在一塊兒並基於鍵值進行分區,以使全部相關值在一塊兒。最後,分區數據減小到結果。
# multiprocessing_mapreduce.py
import collections
import itertools
import multiprocessing
class SimpleMapReduce:
def __init__(self, map_func, reduce_func, num_workers=None):
""" map_func Function to map inputs to intermediate data. Takes as argument one input value and returns a tuple with the key and a value to be reduced. reduce_func Function to reduce partitioned version of intermediate data to final output. Takes as argument a key as produced by map_func and a sequence of the values associated with that key. num_workers The number of workers to create in the pool. Defaults to the number of CPUs available on the current host. """
self.map_func = map_func
self.reduce_func = reduce_func
self.pool = multiprocessing.Pool(num_workers)
def partition(self, mapped_values):
"""Organize the mapped values by their key. Returns an unsorted sequence of tuples with a key and a sequence of values. """
partitioned_data = collections.defaultdict(list)
for key, value in mapped_values:
partitioned_data[key].append(value)
return partitioned_data.items()
def __call__(self, inputs, chunksize=1):
"""Process the inputs through the map and reduce functions given. inputs An iterable containing the input data to be processed. chunksize=1 The portion of the input data to hand to each worker. This can be used to tune performance during the mapping phase. """
map_responses = self.pool.map(
self.map_func,
inputs,
chunksize=chunksize,
)
partitioned_data = self.partition(
itertools.chain(*map_responses)
)
reduced_values = self.pool.map(
self.reduce_func,
partitioned_data,
)
return reduced_values
複製代碼
下面的示例腳本使用 SimpleMapReduce 來計算本文的 reStructuredText 源中的「words」,忽略了一些標記。
# multiprocessing_wordcount.py
import multiprocessing
import string
from multiprocessing_mapreduce import SimpleMapReduce
def file_to_words(filename):
"""Read a file and return a sequence of (word, occurences) values. """
STOP_WORDS = set([
'a', 'an', 'and', 'are', 'as', 'be', 'by', 'for', 'if',
'in', 'is', 'it', 'of', 'or', 'py', 'rst', 'that', 'the',
'to', 'with',
])
TR = str.maketrans({
p: ' '
for p in string.punctuation
})
print('{} reading {}'.format(
multiprocessing.current_process().name, filename))
output = []
with open(filename, 'rt') as f:
for line in f:
# Skip comment lines.
if line.lstrip().startswith('..'):
continue
line = line.translate(TR) # Strip punctuation
for word in line.split():
word = word.lower()
if word.isalpha() and word not in STOP_WORDS:
output.append((word, 1))
return output
def count_words(item):
"""Convert the partitioned data for a word to a tuple containing the word and the number of occurences. """
word, occurences = item
return (word, sum(occurences))
if __name__ == '__main__':
import operator
import glob
input_files = glob.glob('*.rst')
mapper = SimpleMapReduce(file_to_words, count_words)
word_counts = mapper(input_files)
word_counts.sort(key=operator.itemgetter(1))
word_counts.reverse()
print('\nTOP 20 WORDS BY FREQUENCY\n')
top20 = word_counts[:20]
longest = max(len(word) for word, count in top20)
for word, count in top20:
print('{word:<{len}}: {count:5}'.format(
len=longest + 1,
word=word,
count=count)
)
複製代碼
file_to_words()
函數將每一個輸入文件轉換爲包含單詞和數字1
(表示單個匹配項)的元組序列。經過partition()
使用單詞做爲鍵來劃分數據,所以獲得的結構由一個鍵和1
表示每一個單詞出現的值序列組成。count_words()
在縮小階段,分區數據被轉換爲一組元組,其中包含一個單詞和該單詞的計數。
$ python3 -u multiprocessing_wordcount.py
ForkPoolWorker-1 reading basics.rst
ForkPoolWorker-2 reading communication.rst
ForkPoolWorker-3 reading index.rst
ForkPoolWorker-4 reading mapreduce.rst
TOP 20 WORDS BY FREQUENCY
process : 83
running : 45
multiprocessing : 44
worker : 40
starting : 37
now : 35
after : 34
processes : 31
start : 29
header : 27
pymotw : 27
caption : 27
end : 27
daemon : 22
can : 22
exiting : 21
forkpoolworker : 21
consumer : 20
main : 18
event : 16
複製代碼
相關文檔: