matplotlib經常使用操做2

關於matplotlib學習仍是強烈建議常去官方http://matplotlib.org/contents.html裏查一查各類用法和toturial等。 
下面是jupyter notebook代碼導出的md文件。html

Plotting and Visualization

from __future__ import division from numpy.random import randn import numpy as np import os import matplotlib.pyplot as plt np.random.seed(12345) plt.rc('figure', figsize=(10, 6)) from pandas import Series, DataFrame import pandas as pd np.set_printoptions(precision=4)
%matplotlib inline
  • 1

matplotlib API 介紹

import matplotlib.pyplot as plt
  • 1

Figures and Subplots

fig = plt.figure()
  • 1
ax1 = fig.add_subplot(2, 2, 1)
  • 1
ax2 = fig.add_subplot(2, 2, 2) ax3 = fig.add_subplot(2, 2, 3)

 

from numpy.random import randn plt.plot(randn(50).cumsum(), 'k--')
[<matplotlib.lines.Line2D at 0x28e7668cb38>]

png

_ = ax1.hist(randn(100), bins=20, color='k', alpha=0.3) ax2.scatter(np.arange(30), np.arange(30) + 3 * randn(30))
plt.close('all')
  • 1
fig, axes = plt.subplots(2, 3) axes
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76BAFF98>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76C047F0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76C4CB00>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76C89D30>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76CD7940>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76D0FFD0>]], dtype=object)

png

## 調整subplot間距python

plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True) for i in range(2): for j in range(2): axes[i, j].hist(randn(500), bins=50, color='k', alpha=0.5) plt.subplots_adjust(wspace=0, hspace=0)

png

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True) for i in range(2): for j in range(2): axes[i, j].hist(randn(500), bins=50, color='k', alpha=0.5) plt.subplots_adjust(wspace=0, hspace=0)

png

### 線條格式express

plt.figure()
  • 1
plt.plot(randn(30).cumsum(), 'ko--')
  • 1
[<matplotlib.lines.Line2D at 0x28e7866a390>]
  • 1
  • 2

png

plt.close('all')
  • 1
data = randn(30).cumsum() plt.plot(data, 'k--', label='Default') plt.plot(data, 'k-', drawstyle='steps-post', label='steps') plt.legend(loc='best')

 

<matplotlib.legend.Legend at 0x28e781103c8>

png

### Ticks, labels, and legends #### Setting the title, axis labels, ticks, and ticklabelsapi

fig = plt.figure(); ax = fig.add_subplot(1, 1, 1) ax.plot(randn(1000).cumsum()) ticks = ax.set_xticks([0, 250, 500, 750, 1000]) labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'], rotation=30, fontsize='small') ax.set_title('some random lines') ax.set_xlabel('Stages')
<matplotlib.text.Text at 0x28e782525c0>
  • 1
  • 2

這裏寫圖片描述

#### Adding legendsapp

fig = plt.figure(); ax = fig.add_subplot(1, 1, 1) ax.plot(randn(1000).cumsum(), 'k', label='one') ax.plot(randn(1000).cumsum(), 'k--', label='two') ax.plot(randn(1000).cumsum(), 'k.', label='three') ax.legend(loc='best')
<matplotlib.legend.Legend at 0x28e7801e668>
  • 1
  • 2

png

### subplot 作標記dom

from datetime import datetime fig = plt.figure() ax = fig.add_subplot(1, 1, 1) data = pd.read_csv('julyedu/spx.csv', index_col=0, parse_dates=True) spx = data['SPX'] spx.plot(ax=ax, style='k-') crisis_data = [ (datetime(2007, 10, 11), 'Peak of bull market'), (datetime(2008, 3, 12), 'Bear Stearns Fails'), (datetime(2008, 9, 15), 'Lehman Bankruptcy') ] for date, label in crisis_data: ax.annotate(label, xy=(date, spx.asof(date) + 50), xytext=(date, spx.asof(date) + 200), arrowprops=dict(facecolor='black'), horizontalalignment='left', verticalalignment='top') # Zoom in on 2007-2010 ax.set_xlim(['1/1/2007', '1/1/2011']) ax.set_ylim([600, 1800]) ax.set_title('Important dates in 2008-2009 financial crisis')
<matplotlib.text.Text at 0x28e77fb7358>

png

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1) rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color='k', alpha=0.3) circ = plt.Circle((0.7, 0.2), 0.15, color='b', alpha=0.3) pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]], color='g', alpha=0.5) ax.add_patch(rect) ax.add_patch(circ) ax.add_patch(pgon)
<matplotlib.patches.Polygon at 0x28e77ed76a0>
  • 1
  • 2

png

### Saving plots to filesvg

fig
  • 1

png

fig.savefig('figpath.svg')
  • 1
fig.savefig('figpath.png', dpi=400, bbox_inches='tight')
  • 1
from io import BytesIO buffer = BytesIO() plt.savefig(buffer) plot_data = buffer.getvalue()

### matplotlib configurationpost

plt.rc('figure', figsize=(10, 10))
  • 1

## Plotting functions in pandas ### Line plots學習

plt.close('all')
  • 1
s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10)) s.plot()

 

<matplotlib.axes._subplots.AxesSubplot at 0x28e781c0208>

png

df = DataFrame(np.random.randn(10, 4).cumsum(0), columns=['A', 'B', 'C', 'D'], index=np.arange(0, 100, 10)) df.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x28e7809d358>

png

### Bar plotsurl

fig, axes = plt.subplots(2, 1) data = Series(np.random.rand(16), index=list('abcdefghijklmnop')) data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7) data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7)

 

<matplotlib.axes._subplots.AxesSubplot at 0x11fd02b50>

 

png

df = DataFrame(np.random.rand(6, 4), index=['one', 'two', 'three', 'four', 'five', 'six'], columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus')) df df.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x28e77f482e8>
  • 1
  • 2

png

plt.figure()
  • 1
df.plot(kind='barh', stacked=True, alpha=0.5)
  • 1
<matplotlib.axes._subplots.AxesSubplot at 0x28e77e05be0>

png

tips = pd.read_csv('julyedu/tips.csv') party_counts = pd.crosstab(tips.day, tips.size) print(party_counts) # Not many 1- and 6-person parties party_counts = party_counts.ix[:, 2:5] print(party_counts)

col_0 1708 day Fri 19 Sat 87 Sun 76 Thur 62 Empty DataFrame Columns: [] Index: [Fri, Sat, Sun, Thur] ### Histograms and density plots

plt.figure()
  • 1
tips['tip_pct'] = tips['tip'] / tips['total_bill'] print(tips.head()) tips['tip_pct'].hist(bins=50)
total_bill   tip     sex smoker  day    time  size   tip_pct
0       16.99  1.01  Female     No  Sun  Dinner     2  0.059447
1       10.34  1.66    Male     No  Sun  Dinner     3  0.160542
2       21.01  3.50    Male     No  Sun  Dinner     3  0.166587
3       23.68  3.31    Male     No  Sun  Dinner     2  0.139780
4       24.59  3.61  Female     No  Sun  Dinner     4  0.146808





<matplotlib.axes._subplots.AxesSubplot at 0x28e7997b390>

png

plt.figure()
  • 1
tips['tip_pct'].plot(kind='kde')
  • 1
plt.figure()
  • 1
comp1 = np.random.normal(0, 1, size=200) # N(0, 1) comp2 = np.random.normal(10, 2, size=200) # N(10, 4) values = Series(np.concatenate([comp1, comp2])) values.hist(bins=100, alpha=0.3, color='k', normed=True) values.plot(kind='kde', style='k--')
<matplotlib.axes._subplots.AxesSubplot at 0x28e79b24358>
  • 1
  • 2

這裏寫圖片描述

### Scatter plots

macro = pd.read_csv('julyedu/macrodata.csv') data = macro[['cpi', 'm1', 'tbilrate', 'unemp']] trans_data = np.log(data).diff().dropna() trans_data[-5:]
  cpi m1 tbilrate unemp
198 -0.007904 0.045361 -0.396881 0.105361
199 -0.021979 0.066753 -2.277267 0.139762
200 0.002340 0.010286 0.606136 0.160343
201 0.008419 0.037461 -0.200671 0.127339
202 0.008894 0.012202 -0.405465 0.042560
plt.figure()
  • 1
plt.scatter(trans_data['m1'], trans_data['unemp']) plt.title('Changes in log %s vs. log %s' % ('m1', 'unemp'))
  • 1
  • 2
<matplotlib.text.Text at 0x28e7bfebcc0>
  • 1
  • 2

這裏寫圖片描述

pd.scatter_matrix(trans_data, diagonal='kde', alpha=0.3)
  • 1
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7CA07EF0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C6E9128>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7DFEEBA8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C3DB3C8>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C9E5EB8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C9D0E10>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7BFE87B8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C732FD0>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C9704E0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7CF63320>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C8BB748>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C820978>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C6BBB00>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C3405F8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C874DA0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7E036550>]], dtype=object)

這裏寫圖片描述

## Plotting Maps: Visualizing Haiti Earthquake Crisis data

data = pd.read_csv('julyedu/Haiti.csv') data.info()
  • 1
  • 2
data[['INCIDENT DATE', 'LATITUDE', 'LONGITUDE']][:10]
  • 1
  INCIDENT DATE LATITUDE LONGITUDE
0 05/07/2010 17:26 18.233333 -72.533333
1 28/06/2010 23:06 50.226029 5.729886
2 24/06/2010 16:21 22.278381 114.174287
3 20/06/2010 21:59 44.407062 8.933989
4 18/05/2010 16:26 18.571084 -72.334671
5 26/04/2010 13:14 18.593707 -72.310079
6 26/04/2010 14:19 18.482800 -73.638800
7 26/04/2010 14:27 18.415000 -73.195000
8 15/03/2010 10:58 18.517443 -72.236841
9 15/03/2010 11:00 18.547790 -72.410010
data['CATEGORY'][:6]
  • 1

0 1. Urgences | Emergency, 3. Public Health, 1 1. Urgences | Emergency, 2. Urgences logistiqu… 2 2. Urgences logistiques | Vital Lines, 8. Autr… 3 1. Urgences | Emergency, 4 1. Urgences | Emergency, 5 5e. Communication lines down, Name: CATEGORY, dtype: object

data.describe()
  • 1
  Serial LATITUDE LONGITUDE
count 3593.000000 3593.000000 3593.000000
mean 2080.277484 18.611495 -72.322680
std 1171.100360 0.738572 3.650776
min 4.000000 18.041313 -74.452757
25% 1074.000000 18.524070 -72.417500
50% 2163.000000 18.539269 -72.335000
75% 3088.000000 18.561820 -72.293570
max 4052.000000 50.226029 114.174287
data = data[(data.LATITUDE > 18) & (data.LATITUDE < 20) & (data.LONGITUDE > -75) & (data.LONGITUDE < -70) & data.CATEGORY.notnull()]
def to_cat_list(catstr): stripped = (x.strip() for x in catstr.split(',')) return [x for x in stripped if x] def get_all_categories(cat_series): cat_sets = (set(to_cat_list(x)) for x in cat_series) return sorted(set.union(*cat_sets)) def get_english(cat): code, names = cat.split('.') if '|' in names: names = names.split(' | ')[1] return code, names.strip()
get_english('2. Urgences logistiques | Vital Lines')
  • 1
('2', 'Vital Lines')
all_cats = get_all_categories(data.CATEGORY)
# Generator expression english_mapping = dict(get_english(x) for x in all_cats) english_mapping['2a'] english_mapping['6c']
'Earthquake and aftershocks'

 

def get_code(seq): return [x.split('.')[0] for x in seq if x] all_codes = get_code(all_cats) code_index = pd.Index(np.unique(all_codes)) dummy_frame = DataFrame(np.zeros((len(data), len(code_index))), index=data.index, columns=code_index)

 

dummy_frame.ix[:, :6].info()
  • 1
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3569 entries, 0 to 3592
Data columns (total 6 columns):
1     3569 non-null float64
1a    3569 non-null float64
1b    3569 non-null float64
1c    3569 non-null float64
1d    3569 non-null float64
2     3569 non-null float64
dtypes: float64(6)
memory usage: 195.2 KB
for row, cat in zip(data.index, data.CATEGORY): codes = get_code(to_cat_list(cat)) dummy_frame.ix[row, codes] = 1 data = data.join(dummy_frame.add_prefix('category_'))

 

data.ix[:, 10:15].info()
  • 1
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3569 entries, 0 to 3592
Data columns (total 5 columns):
category_1     3569 non-null float64
category_1a    3569 non-null float64
category_1b    3569 non-null float64
category_1c    3569 non-null float64
category_1d    3569 non-null float64
dtypes: float64(5)
memory usage: 167.3 KB
from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt def basic_haiti_map(ax=None, lllat=17.25, urlat=20.25, lllon=-75, urlon=-71): # create polar stereographic Basemap instance. m = Basemap(ax=ax, projection='stere', lon_0=(urlon + lllon) / 2, lat_0=(urlat + lllat) / 2, llcrnrlat=lllat, urcrnrlat=urlat, llcrnrlon=lllon, urcrnrlon=urlon, resolution='f') # draw coastlines, state and country boundaries, edge of map. m.drawcoastlines() m.drawstates() m.drawcountries() return m
---------------------------------------------------------------------------

ImportError                               Traceback (most recent call last)

<ipython-input-66-ec31ba3e955e> in <module>()
----> 1 from mpl_toolkits.basemap import Basemap
      2 import matplotlib.pyplot as plt
      3 
      4 def basic_haiti_map(ax=None, lllat=17.25, urlat=20.25,
      5                     lllon=-75, urlon=-71):


ImportError: No module named 'mpl_toolkits.basemap'
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 10)) fig.subplots_adjust(hspace=0.05, wspace=0.05) to_plot = ['2a', '1', '3c', '7a'] lllat=17.25; urlat=20.25; lllon=-75; urlon=-71 for code, ax in zip(to_plot, axes.flat): m = basic_haiti_map(ax, lllat=lllat, urlat=urlat, lllon=lllon, urlon=urlon) cat_data = data[data['category_%s' % code] == 1] # compute map proj coordinates. x, y = m(cat_data.LONGITUDE.values, cat_data.LATITUDE.values) m.plot(x, y, 'k.', alpha=0.5) ax.set_title('%s: %s' % (code, english_mapping[code]))

png

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 10)) fig.subplots_adjust(hspace=0.05, wspace=0.05) to_plot = ['2a', '1', '3c', '7a'] lllat=17.25; urlat=20.25; lllon=-75; urlon=-71 def make_plot(): for i, code in enumerate(to_plot): cat_data = data[data['category_%s' % code] == 1] lons, lats = cat_data.LONGITUDE, cat_data.LATITUDE ax = axes.flat[i] m = basic_haiti_map(ax, lllat=lllat, urlat=urlat, lllon=lllon, urlon=urlon) # compute map proj coordinates. x, y = m(lons.values, lats.values) m.plot(x, y, 'k.', alpha=0.5) ax.set_title('%s: %s' % (code, english_mapping[code]))
make_plot()
相關文章
相關標籤/搜索