做者|Garima Singh
編譯|VK
來源|Git Connectedhtml
之前照相歷來沒有那麼容易。如今你只須要一部手機。拍照是免費的,若是咱們不考慮手機的費用的話。就在上一代人以前,業餘藝術家和真正的藝術家若是拍照很是昂貴,而且每張照片的成本也不是免費的。python
咱們拍照是爲了及時保存偉大的時刻,被保存的記憶隨時準備在將來被"打開"。git
就像醃製東西同樣,咱們要注意正確的防腐劑。固然,手機也爲咱們提供了一系列的圖像處理軟件,可是一旦咱們須要處理大量的照片,咱們就須要其餘的工具。這時,編程和Python就派上用場了。Python及其模塊如Numpy、Scipy、Matplotlib和其餘特殊模塊提供了各類各樣的函數,可以處理大量圖片。spring
爲了向你提供必要的知識,本章的Python教程將處理基本的圖像處理和操做。爲此,咱們使用模塊NumPy、Matplotlib和SciPy。編程
咱們從scipy包misc開始。數組
# 如下行僅在Python notebook中須要: %matplotlib inline from scipy import misc ascent = misc.ascent() import matplotlib.pyplot as plt plt.gray() plt.imshow(ascent) plt.show()
除了圖像以外,咱們還能夠看到帶有刻度的軸。這多是很是有趣的,若是你須要一些關於大小和像素位置的方向,但在大多數狀況下,你想看到沒有這些信息的圖像。咱們能夠經過添加命令plt.axis("off")
來去掉刻度和軸:機器學習
from scipy import misc ascent = misc.ascent() import matplotlib.pyplot as plt plt.axis("off") # 刪除軸和刻度 plt.gray() plt.imshow(ascent) plt.show()
咱們能夠看到這個圖像的類型是一個整數數組:函數
ascent.dtype
輸出:工具
dtype('int64')
學習
咱們也能夠檢查圖像的大小:
ascent.shape
輸出:
(512,512)
misc包裏還有一張浣熊的圖片:
import scipy.misc face = scipy.misc.face() print(face.shape) print(face.max) print(face.dtype) plt.axis("off") plt.gray() plt.imshow(face) plt.show() (768, 1024, 3) <built-in method max of numpy.ndarray object at 0x7f9e70102800> uint8 import matplotlib.pyplot as plt
matplotlib只支持png圖像
img = plt.imread('frankfurt.png') print(img[:3]) [[[ 0.41176471 0.56862748 0.80000001] [ 0.40392157 0.56078434 0.79215688] [ 0.40392157 0.56862748 0.79607844] ..., [ 0.48235294 0.62352943 0.81960785] [ 0.47843137 0.627451 0.81960785] [ 0.47843137 0.62352943 0.82745099]] [[ 0.40784314 0.56470591 0.79607844] [ 0.40392157 0.56078434 0.79215688] [ 0.40392157 0.56862748 0.79607844] ..., [ 0.48235294 0.62352943 0.81960785] [ 0.47843137 0.627451 0.81960785] [ 0.48235294 0.627451 0.83137256]] [[ 0.40392157 0.56862748 0.79607844] [ 0.40392157 0.56862748 0.79607844] [ 0.40392157 0.56862748 0.79607844] ..., [ 0.48235294 0.62352943 0.81960785] [ 0.48235294 0.62352943 0.81960785] [ 0.48627451 0.627451 0.83137256]]] plt.axis("off") imgplot = plt.imshow(img) lum_img = img[:,:,1] print(lum_img) [[ 0.56862748 0.56078434 0.56862748 ..., 0.62352943 0.627451 0.62352943] [ 0.56470591 0.56078434 0.56862748 ..., 0.62352943 0.627451 0.627451 ] [ 0.56862748 0.56862748 0.56862748 ..., 0.62352943 0.62352943 0.627451 ] ..., [ 0.31764707 0.32941177 0.32941177 ..., 0.30588236 0.3137255 0.31764707] [ 0.31764707 0.3137255 0.32941177 ..., 0.3019608 0.32156864 0.33725491] [ 0.31764707 0.3019608 0.33333334 ..., 0.30588236 0.32156864 0.33333334]] plt.axis("off") imgplot = plt.imshow(lum_img)
如今,咱們將展現如何給圖像着色。色彩是色彩理論的一種表達,是畫家經常使用的一種技法。想到畫家而不想到荷蘭是很難想象的。因此在下一個例子中,咱們使用荷蘭風車的圖片。
windmills = plt.imread('windmills.png') plt.axis("off") plt.imshow(windmills)
輸出:
<matplotlib.image.AxesImage at 0x7f9e77f02f98>
咱們如今想給圖像着色。咱們用白色,這將增長圖像的亮度。爲此,咱們編寫了一個Python函數,它接受一個圖像和一個百分比值做爲參數。設置"百分比"爲0不會改變圖像,設置爲1表示圖像將徹底變白:
import numpy as np import matplotlib.pyplot as plt def tint(imag, percent): """ imag: 圖像 percent: 0,圖像將保持不變,1,圖像將徹底變白色,值應該在0~1 """ tinted_imag = imag + (np.ones(imag.shape) - imag) * percent return tinted_imag windmills = plt.imread('windmills.png') tinted_windmills = tint(windmills, 0.8) plt.axis("off") plt.imshow(tinted_windmills)
輸出:
<matplotlib.image.AxesImage at 0x7f9e6cd99978>
陰影是一種顏色與黑色的混合,它減小了亮度。
import numpy as np import matplotlib.pyplot as plt def shade(imag, percent): """ imag: 圖像 percent: 0,圖像將保持不變,1,圖像將徹底變黑,值應該在0~1 """ tinted_imag = imag * (1 - percent) return tinted_imag windmills = plt.imread('windmills.png') tinted_windmills = shade(windmills, 0.7) plt.imshow(tinted_windmills)
輸出:
<matplotlib.image.AxesImage at 0x7f9e6cd20048> def vertical_gradient_line(image, reverse=False): """ 咱們建立一個垂直梯度線。形狀 (1, image.shape[1], 3)) 若是reverse爲False,則值從0增長到1, 不然,值將從1遞減到0。 """ number_of_columns = image.shape[1] if reverse: C = np.linspace(1, 0, number_of_columns) else: C = np.linspace(0, 1, number_of_columns) C = np.dstack((C, C, C)) return C horizontal_brush = vertical_gradient_line(windmills) tinted_windmills = windmills * horizontal_brush plt.axis("off") plt.imshow(tinted_windmills)
輸出:
<matplotlib.image.AxesImage at 0x7f9e6ccb3d68>
如今,咱們將經過將Python函數的reverse參數設置爲「True」來從右向左着色圖像:
def vertical_gradient_line(image, reverse=False): """ 咱們建立一個水平梯度線。形狀 (1, image.shape[1], 3)) 若是reverse爲False,則值從0增長到1, 不然,值將從1遞減到0。 """ number_of_columns = image.shape[1] if reverse: C = np.linspace(1, 0, number_of_columns) else: C = np.linspace(0, 1, number_of_columns) C = np.dstack((C, C, C)) return C horizontal_brush = vertical_gradient_line(windmills, reverse=True) tinted_windmills = windmills * horizontal_brush plt.axis("off") plt.imshow(tinted_windmills)
輸出:
<matplotlib.image.AxesImage at 0x7f9e6cbc82b0> def horizontal_gradient_line(image, reverse=False): """ 咱們建立一個垂直梯度線。形狀(image.shape[0], 1, 3)) 若是reverse爲False,則值從0增長到1, 不然,值將從1遞減到0。 """ number_of_rows, number_of_columns = image.shape[:2] C = np.linspace(1, 0, number_of_rows) C = C[np.newaxis,:] C = np.concatenate((C, C, C)).transpose() C = C[:, np.newaxis] return C vertical_brush = horizontal_gradient_line(windmills) tinted_windmills = windmills plt.imshow(tinted_windmills)
輸出:
<matplotlib.image.AxesImage at 0x7f9e6cb52390>
色調是由一種顏色與灰色的混合產生的,或由着色和陰影產生的。
charlie = plt.imread('Chaplin.png') plt.gray() print(charlie) plt.imshow(charlie) [[ 0.16470589 0.16862746 0.17647059 ..., 0. 0. 0. ] [ 0.16078432 0.16078432 0.16470589 ..., 0. 0. 0. ] [ 0.15686275 0.15686275 0.16078432 ..., 0. 0. 0. ] ..., [ 0. 0. 0. ..., 0. 0. 0. ] [ 0. 0. 0. ..., 0. 0. 0. ] [ 0. 0. 0. ..., 0. 0. 0. ]]
輸出:
<matplotlib.image.AxesImage at 0x7f9e70047668>
給灰度圖像着色:http://scikit-image.org/docs/dev/auto_examples/plot_tinting_grayscale_images.html
在下面的示例中,咱們將使用不一樣的顏色映射。顏色映射能夠在matplotlib.pyplot.cm.datad中找到:
plt.cm.datad.keys()
輸出:
dict_keys(['afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg', 'CMRmap', 'cool', 'copper', 'cubehelix', 'flag', 'gnuplot', 'gnuplot2', 'gray', 'hot', 'hsv', 'jet', 'ocean', 'pink', 'prism', 'rainbow', 'seismic', 'spring', 'summer', 'terrain', 'winter', 'nipy_spectral', 'spectral', 'Blues', 'BrBG', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PiYG', 'PRGn', 'PuBu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples', 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn', 'Reds', 'Spectral', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd', 'gist_earth', 'gist_gray', 'gist_heat', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'gist_yarg', 'coolwarm', 'Wistia', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'Vega10', 'Vega20', 'Vega20b', 'Vega20c', 'afmhot_r', 'autumn_r', 'bone_r', 'binary_r', 'bwr_r', 'brg_r', 'CMRmap_r', 'cool_r', 'copper_r', 'cubehelix_r', 'flag_r', 'gnuplot_r', 'gnuplot2_r', 'gray_r', 'hot_r', 'hsv_r', 'jet_r', 'ocean_r', 'pink_r', 'prism_r', 'rainbow_r', 'seismic_r', 'spring_r', 'summer_r', 'terrain_r', 'winter_r', 'nipy_spectral_r', 'spectral_r', 'Blues_r', 'BrBG_r', 'BuGn_r', 'BuPu_r', 'GnBu_r', 'Greens_r', 'Greys_r', 'Oranges_r', 'OrRd_r', 'PiYG_r', 'PRGn_r', 'PuBu_r', 'PuBuGn_r', 'PuOr_r', 'PuRd_r', 'Purples_r', 'RdBu_r', 'RdGy_r', 'RdPu_r', 'RdYlBu_r', 'RdYlGn_r', 'Reds_r', 'Spectral_r', 'YlGn_r', 'YlGnBu_r', 'YlOrBr_r', 'YlOrRd_r', 'gist_earth_r', 'gist_gray_r', 'gist_heat_r', 'gist_ncar_r', 'gist_rainbow_r', 'gist_stern_r', 'gist_yarg_r', 'coolwarm_r', 'Wistia_r', 'Accent_r', 'Dark2_r', 'Paired_r', 'Pastel1_r', 'Pastel2_r', 'Set1_r', 'Set2_r', 'Set3_r', 'tab10_r', 'tab20_r', 'tab20b_r', 'tab20c_r', 'Vega10_r', 'Vega20_r', 'Vega20b_r', 'Vega20c_r']) import numpy as np import matplotlib.pyplot as plt charlie = plt.imread('Chaplin.png') # colormaps plt.cm.datad # cmaps = set(plt.cm.datad.keys()) cmaps = {'afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg', 'CMRmap', 'cool', 'copper', 'cubehelix', 'Greens'} X = [ (4,3,1, (1, 0, 0)), (4,3,2, (0.5, 0.5, 0)), (4,3,3, (0, 1, 0)), (4,3,4, (0, 0.5, 0.5)), (4,3,(5,8), (0, 0, 1)), (4,3,6, (1, 1, 0)), (4,3,7, (0.5, 1, 0) ), (4,3,9, (0, 0.5, 0.5)), (4,3,10, (0, 0.5, 1)), (4,3,11, (0, 1, 1)), (4,3,12, (0.5, 1, 1))] fig = plt.figure(figsize=(6, 5)) #fig.subplots_adjust(bottom=0, left=0, top = 0.975, right=1) for nrows, ncols, plot_number, factor in X: sub = fig.add_subplot(nrows, ncols, plot_number) sub.set_xticks([]) plt.colors() sub.imshow(charlie*0.0002, cmap=cmaps.pop()) sub.set_yticks([]) #fig.show()
原文連接:https://levelup.gitconnected.com/image-processing-in-python-b5e3e11e1413
歡迎關注磐創AI博客站:
http://panchuang.net/
sklearn機器學習中文官方文檔:
http://sklearn123.com/
歡迎關注磐創博客資源彙總站:
http://docs.panchuang.net/