博客參考:http://www.javashuo.com/article/p-rnsalbjq-em.htmlhtml
樣條插值是一種工業設計中經常使用的、獲得平滑曲線的一種插值方法,三次樣條又是其中用的較爲普遍的一種。本篇介紹力求用容易理解的方式,介紹一下三次樣條插值的原理,並附C語言的實現代碼。redis
1. 三次樣條曲線原理
假設有如下節點算法
1.1 定義
條曲線 是一個分段定義的公式。給定n+1個數據點,共有n個區間,三次樣條方程知足如下條件:express
因此n個三次多項式分段能夠寫做:app
其中ai, bi, ci, di表明4n個未知係數。函數
1.2 求解
已知條件this
- n+1個數據點[xi, yi], i = 0, 1, …, n
- 每一分段都是三次多項式函數曲線
- 節點達到二階連續
- 左右兩端點處特性(天然邊界,固定邊界,非節點邊界)
根據定點,求出每段樣條曲線方程中的係數,便可獲得每段曲線的具體表達式。spa
- 插值和連續性:
- 微分連續性:
- 樣條曲線的微分式:
將步長 帶入樣條曲線的條件:
由此可得:
端點條件
由i的取值範圍可知,共有n-1個公式, 但卻有n+1個未知量m 。要想求解該方程組,還需另外兩個式子。因此須要對兩端點x0和xn的微分加些限制。 選擇不是惟一的,3種比較經常使用的限制以下。
- 自由邊界(Natural)
首尾兩端沒有受到任何讓它們彎曲的力,即 。具體表示爲 和 . 則要求解的方程組可寫爲:
2. 固定邊界(Clamped)
首尾兩端點的微分值是被指定的,這裏分別定爲A和B。則能夠推出
將上述兩個公式帶入方程組,新的方程組左側爲
3. 非節點邊界(Not-A-Knot)
指定樣條曲線的三次微分匹配,即
和
新的方程組係數矩陣可寫爲:
右下圖能夠看出不一樣的端點邊界對樣條曲線的影響:
1.3 算法總結
假定有n+1個數據節點:
- 計算步長 (i = 0, 1, …, n-1)
- 將數據節點和指定的首位端點條件帶入矩陣方程
- 解矩陣方程,求得二次微分值。該矩陣爲三對角矩陣,具體求法參見個人上篇文章:三對角矩陣的求解。
- 計算樣條曲線的係數:
其中i = 0, 1, …, n-1
2. C++ 語言實現
C++語言寫了一個三次樣條插值(天然邊界)函數,代碼爲 Udacity Path Planning 課程中使用的 simple cubic spline interpolation library without external 文件。
/* * spline.h * * simple cubic spline interpolation library without external * dependencies * * --------------------------------------------------------------------- * Copyright (C) 2011, 2014 Tino Kluge (ttk448 at gmail.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * --------------------------------------------------------------------- * */ #ifndef TK_SPLINE_H #define TK_SPLINE_H #include <cstdio> #include <cassert> #include <vector> #include <algorithm> // unnamed namespace only because the implementation is in this // header file and we don't want to export symbols to the obj files namespace { namespace tk { // band matrix solver class band_matrix { private: std::vector< std::vector<double> > m_upper; // upper band std::vector< std::vector<double> > m_lower; // lower band public: band_matrix() {}; // constructor band_matrix(int dim, int n_u, int n_l); // constructor ~band_matrix() {}; // destructor void resize(int dim, int n_u, int n_l); // init with dim,n_u,n_l int dim() const; // matrix dimension int num_upper() const { return m_upper.size()-1; } int num_lower() const { return m_lower.size()-1; } // access operator double & operator () (int i, int j); // write double operator () (int i, int j) const; // read // we can store an additional diogonal (in m_lower) double& saved_diag(int i); double saved_diag(int i) const; void lu_decompose(); std::vector<double> r_solve(const std::vector<double>& b) const; std::vector<double> l_solve(const std::vector<double>& b) const; std::vector<double> lu_solve(const std::vector<double>& b, bool is_lu_decomposed=false); }; // spline interpolation class spline { public: enum bd_type { first_deriv = 1, second_deriv = 2 }; private: std::vector<double> m_x,m_y; // x,y coordinates of points // interpolation parameters // f(x) = a*(x-x_i)^3 + b*(x-x_i)^2 + c*(x-x_i) + y_i std::vector<double> m_a,m_b,m_c; // spline coefficients double m_b0, m_c0; // for left extrapol bd_type m_left, m_right; double m_left_value, m_right_value; bool m_force_linear_extrapolation; public: // set default boundary condition to be zero curvature at both ends spline(): m_left(second_deriv), m_right(second_deriv), m_left_value(0.0), m_right_value(0.0), m_force_linear_extrapolation(false) { ; } // optional, but if called it has to come be before set_points() void set_boundary(bd_type left, double left_value, bd_type right, double right_value, bool force_linear_extrapolation=false); void set_points(const std::vector<double>& x, const std::vector<double>& y, bool cubic_spline=true); double operator() (double x) const; }; // --------------------------------------------------------------------- // implementation part, which could be separated into a cpp file // --------------------------------------------------------------------- // band_matrix implementation // ------------------------- band_matrix::band_matrix(int dim, int n_u, int n_l) { resize(dim, n_u, n_l); } void band_matrix::resize(int dim, int n_u, int n_l) { assert(dim>0); assert(n_u>=0); assert(n_l>=0); m_upper.resize(n_u+1); m_lower.resize(n_l+1); for(size_t i=0; i<m_upper.size(); i++) { m_upper[i].resize(dim); } for(size_t i=0; i<m_lower.size(); i++) { m_lower[i].resize(dim); } } int band_matrix::dim() const { if(m_upper.size()>0) { return m_upper[0].size(); } else { return 0; } } // defines the new operator (), so that we can access the elements // by A(i,j), index going from i=0,...,dim()-1 double & band_matrix::operator () (int i, int j) { int k=j-i; // what band is the entry assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) ); assert( (-num_lower()<=k) && (k<=num_upper()) ); // k=0 -> diogonal, k<0 lower left part, k>0 upper right part if(k>=0) return m_upper[k][i]; else return m_lower[-k][i]; } double band_matrix::operator () (int i, int j) const { int k=j-i; // what band is the entry assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) ); assert( (-num_lower()<=k) && (k<=num_upper()) ); // k=0 -> diogonal, k<0 lower left part, k>0 upper right part if(k>=0) return m_upper[k][i]; else return m_lower[-k][i]; } // second diag (used in LU decomposition), saved in m_lower double band_matrix::saved_diag(int i) const { assert( (i>=0) && (i<dim()) ); return m_lower[0][i]; } double & band_matrix::saved_diag(int i) { assert( (i>=0) && (i<dim()) ); return m_lower[0][i]; } // LR-Decomposition of a band matrix void band_matrix::lu_decompose() { int i_max,j_max; int j_min; double x; // preconditioning // normalize column i so that a_ii=1 for(int i=0; i<this->dim(); i++) { assert(this->operator()(i,i)!=0.0); this->saved_diag(i)=1.0/this->operator()(i,i); j_min=std::max(0,i-this->num_lower()); j_max=std::min(this->dim()-1,i+this->num_upper()); for(int j=j_min; j<=j_max; j++) { this->operator()(i,j) *= this->saved_diag(i); } this->operator()(i,i)=1.0; // prevents rounding errors } // Gauss LR-Decomposition for(int k=0; k<this->dim(); k++) { i_max=std::min(this->dim()-1,k+this->num_lower()); // num_lower not a mistake! for(int i=k+1; i<=i_max; i++) { assert(this->operator()(k,k)!=0.0); x=-this->operator()(i,k)/this->operator()(k,k); this->operator()(i,k)=-x; // assembly part of L j_max=std::min(this->dim()-1,k+this->num_upper()); for(int j=k+1; j<=j_max; j++) { // assembly part of R this->operator()(i,j)=this->operator()(i,j)+x*this->operator()(k,j); } } } } // solves Ly=b std::vector<double> band_matrix::l_solve(const std::vector<double>& b) const { assert( this->dim()==(int)b.size() ); std::vector<double> x(this->dim()); int j_start; double sum; for(int i=0; i<this->dim(); i++) { sum=0; j_start=std::max(0,i-this->num_lower()); for(int j=j_start; j<i; j++) sum += this->operator()(i,j)*x[j]; x[i]=(b[i]*this->saved_diag(i)) - sum; } return x; } // solves Rx=y std::vector<double> band_matrix::r_solve(const std::vector<double>& b) const { assert( this->dim()==(int)b.size() ); std::vector<double> x(this->dim()); int j_stop; double sum; for(int i=this->dim()-1; i>=0; i--) { sum=0; j_stop=std::min(this->dim()-1,i+this->num_upper()); for(int j=i+1; j<=j_stop; j++) sum += this->operator()(i,j)*x[j]; x[i]=( b[i] - sum ) / this->operator()(i,i); } return x; } std::vector<double> band_matrix::lu_solve(const std::vector<double>& b, bool is_lu_decomposed) { assert( this->dim()==(int)b.size() ); std::vector<double> x,y; if(is_lu_decomposed==false) { this->lu_decompose(); } y=this->l_solve(b); x=this->r_solve(y); return x; } // spline implementation // ----------------------- void spline::set_boundary(spline::bd_type left, double left_value, spline::bd_type right, double right_value, bool force_linear_extrapolation) { assert(m_x.size()==0); // set_points() must not have happened yet m_left=left; m_right=right; m_left_value=left_value; m_right_value=right_value; m_force_linear_extrapolation=force_linear_extrapolation; } void spline::set_points(const std::vector<double>& x,const std::vector<double>& y, bool cubic_spline) { assert(x.size()==y.size()); assert(x.size()>2); m_x=x; m_y=y; int n = x.size(); // TODO: maybe sort x and y, rather than returning an error for(int i=0; i<n-1; i++) { assert(m_x[i] < m_x[i+1]); } if(cubic_spline==true) { // cubic spline interpolation // setting up the matrix and right hand side of the equation system // for the parameters b[] band_matrix A(n,1,1); std::vector<double> rhs(n); for(int i=1; i<n-1; i++) { A(i,i-1)=1.0/3.0*(x[i]-x[i-1]); A(i,i)=2.0/3.0*(x[i+1]-x[i-1]); A(i,i+1)=1.0/3.0*(x[i+1]-x[i]); rhs[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]); } // boundary conditions if(m_left == spline::second_deriv) { // 2*b[0] = f'' A(0,0)=2.0; A(0,1)=0.0; rhs[0]=m_left_value; } else if(m_left == spline::first_deriv) { // c[0] = f', needs to be re-expressed in terms of b: // (2b[0]+b[1])(x[1]-x[0]) = 3 ((y[1]-y[0])/(x[1]-x[0]) - f') A(0,0)=2.0*(x[1]-x[0]); A(0,1)=1.0*(x[1]-x[0]); rhs[0]=3.0*((y[1]-y[0])/(x[1]-x[0])-m_left_value); } else { assert(false); } if(m_right == spline::second_deriv) { // 2*b[n-1] = f'' A(n-1,n-1)=2.0; A(n-1,n-2)=0.0; rhs[n-1]=m_right_value; } else if(m_right == spline::first_deriv) { // c[n-1] = f', needs to be re-expressed in terms of b: // (b[n-2]+2b[n-1])(x[n-1]-x[n-2]) // = 3 (f' - (y[n-1]-y[n-2])/(x[n-1]-x[n-2])) A(n-1,n-1)=2.0*(x[n-1]-x[n-2]); A(n-1,n-2)=1.0*(x[n-1]-x[n-2]); rhs[n-1]=3.0*(m_right_value-(y[n-1]-y[n-2])/(x[n-1]-x[n-2])); } else { assert(false); } // solve the equation system to obtain the parameters b[] m_b=A.lu_solve(rhs); // calculate parameters a[] and c[] based on b[] m_a.resize(n); m_c.resize(n); for(int i=0; i<n-1; i++) { m_a[i]=1.0/3.0*(m_b[i+1]-m_b[i])/(x[i+1]-x[i]); m_c[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - 1.0/3.0*(2.0*m_b[i]+m_b[i+1])*(x[i+1]-x[i]); } } else { // linear interpolation m_a.resize(n); m_b.resize(n); m_c.resize(n); for(int i=0; i<n-1; i++) { m_a[i]=0.0; m_b[i]=0.0; m_c[i]=(m_y[i+1]-m_y[i])/(m_x[i+1]-m_x[i]); } } // for left extrapolation coefficients m_b0 = (m_force_linear_extrapolation==false) ? m_b[0] : 0.0; m_c0 = m_c[0]; // for the right extrapolation coefficients // f_{n-1}(x) = b*(x-x_{n-1})^2 + c*(x-x_{n-1}) + y_{n-1} double h=x[n-1]-x[n-2]; // m_b[n-1] is determined by the boundary condition m_a[n-1]=0.0; m_c[n-1]=3.0*m_a[n-2]*h*h+2.0*m_b[n-2]*h+m_c[n-2]; // = f'_{n-2}(x_{n-1}) if(m_force_linear_extrapolation==true) m_b[n-1]=0.0; } double spline::operator() (double x) const { size_t n=m_x.size(); // find the closest point m_x[idx] < x, idx=0 even if x<m_x[0] std::vector<double>::const_iterator it; it=std::lower_bound(m_x.begin(),m_x.end(),x); int idx=std::max( int(it-m_x.begin())-1, 0); double h=x-m_x[idx]; double interpol; if(x<m_x[0]) { // extrapolation to the left interpol=(m_b0*h + m_c0)*h + m_y[0]; } else if(x>m_x[n-1]) { // extrapolation to the right interpol=(m_b[n-1]*h + m_c[n-1])*h + m_y[n-1]; } else { // interpolation interpol=((m_a[idx]*h + m_b[idx])*h + m_c[idx])*h + m_y[idx]; } return interpol; } } // namespace tk } // namespace #endif /* TK_SPLINE_H */
顯示效果以下