[MySQL優化案例]系列 — 分頁優化

一般,咱們會採用ORDER BY LIMIT start, offset 的方式來進行分頁查詢。例以下面這個SQL:mysql

SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 100, 10;

或者像下面這個不帶任何條件的分頁SQL:算法

SELECT * FROM `t1` ORDER BY id DESC LIMIT 100, 10;

通常而言,分頁SQL的耗時隨着 start 值的增長而急劇增長,咱們來看下面這2個不一樣起始值的分頁SQL執行耗時:sql

yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10;
…

10 rows in set (0.05 sec)


yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=6 ORDER BY id DESC LIMIT 935500, 10;
…

10 rows in set (2.39 sec)

能夠看到,隨着分頁數量的增長,SQL查詢耗時也有數十倍增長,顯然不科學。今天咱們就來分析下,如何能優化這個分頁方案。 通常滴,想要優化分頁的終極方案就是:沒有分頁,哈哈哈~~~,不要說我講廢話,確實如此,能夠把分頁算法交給Sphinx、Lucence等第三方解決方案,不必讓MySQL來作它不擅長的事情。 固然了,有小夥伴說,用第三方太麻煩了,咱們就想用MySQL來作這個分頁,咋辦呢?莫急,且待咱們慢慢分析,先看下錶DDL、數據量、查詢SQL的執行計劃等信息:測試

yejr@imysql.com> SHOW CREATE TABLE `t1`;
CREATE TABLE `t1` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
...
 `ftype` tinyint(3) unsigned NOT NULL,
...
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

yejr@imysql.com> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 994584 |
+----------+

yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 510
 Extra: Using where

yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500, 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 935510
 Extra: Using where

能夠看到,雖然經過主鍵索引進行掃描了,但第二個SQL須要掃描的記錄數太大了,並且須要先掃描約935510條記錄,而後再根據排序結果取10條記錄,這確定是很是慢了。 針對這種狀況,咱們的優化思路就比較清晰了,有兩點:優化

一、儘量從索引中直接獲取數據,避免或減小直接掃描行數據的頻率
二、儘量減小掃描的記錄數,也就是先肯定起始的範圍,再日後取N條記錄便可

據此,咱們有兩種相應的改寫方法:子查詢、錶鏈接,即下面這樣的:排序

#採用子查詢的方式優化,在子查詢裏先從索引獲取到最大id,而後倒序排,再取10行結果集
#注意這裏採用了2次倒序排,所以在取LIMIT的start值時,比原來的值加了10,即935510,不然結果將和原來的不一致
yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using filesort
*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: t1
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 973192
 Extra: Using where
*************************** 3. row ***************************
 id: 3
 select_type: SUBQUERY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 935511
 Extra: Using where

#採用INNER JOIN優化,JOIN子句裏也優先從索引獲取ID列表,而後直接關聯查詢得到最終結果,這裏不須要加10
yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 935510
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: t2.id
 rows: 1
 Extra: NULL
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 973192
 Extra: Using where

而後咱們來對比下這2個優化後的新SQL執行時間:索引

yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) T ORDER BY id DESC;
...
rows in set (1.86 sec)
#採用子查詢優化,從profiling的結果來看,相比原來的那個SQL快了:28.2%

yejr@imysql.com> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id);
...
10 rows in set (1.83 sec)
#採用INNER JOIN優化,從profiling的結果來看,相比原來的那個SQL快了:30.8%

咱們再來看一個不帶過濾條件的分頁SQL對比:get

#原始SQL
yejr@imysql.com> EXPLAIN SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 935510
        Extra: NULL

yejr@imysql.com> SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10;
...
10 rows in set (2.22 sec)

#採用子查詢優化
yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: <derived2>
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 10
        Extra: Using filesort
*************************** 2. row ***************************
           id: 2
  select_type: DERIVED
        table: t1
         type: ALL
possible_keys: PRIMARY
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 973192
        Extra: Using where
*************************** 3. row ***************************
           id: 3
  select_type: SUBQUERY
        table: t1
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 935511
        Extra: Using index

yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;
…
10 rows in set (2.01 sec)
#採用子查詢優化,從profiling的結果來看,相比原來的那個SQL快了:10.6%


#採用INNER JOIN優化
yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id)\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: 
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 935510
        Extra: NULL
*************************** 2. row ***************************
           id: 1
  select_type: PRIMARY
        table: t1
         type: eq_ref
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: t1.id
         rows: 1
        Extra: NULL
*************************** 3. row ***************************
           id: 2
  select_type: DERIVED
        table: t1
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 973192
        Extra: Using index

yejr@imysql.com> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id);
…
10 rows in set (1.70 sec)
#採用INNER JOIN優化,從profiling的結果來看,相比原來的那個SQL快了:30.2%

至此,咱們看到採用子查詢或者INNER JOIN進行優化後,都有大幅度的提高,這個方法也一樣適用於較小的分頁,雖然LIMIT開始的 start 位置小了不少,SQL執行時間也快了不少,但採用這種方法後,帶WHERE條件的分頁分別能提升查詢效率:24.9%、156.5%,不帶WHERE條件的分頁分別提升查詢效率:554.5%、11.7%,各位能夠自行進行測試驗證。單從提高比例說,仍是挺可觀的,確保這些優化方法能夠適用於各類分頁模式,就能夠從一開始就是用。 咱們來看下各類場景相應的提高比例是多少:io

  大分頁,帶WHERE 大分頁,不帶WHERE 大分頁平均提高比例 小分頁,帶WHERE 小分頁,不帶WHERE 整體平均提高比例
子查詢優化 28.20% 10.60% 19.40% 24.90% 554.40% 154.53%
INNER JOIN優化 30.80% 30.20% 30.50% 156.50% 11.70% 57.30%

結論:這樣看就和明顯了,尤爲是針對大分頁的狀況,所以咱們優先推薦使用INNER JOIN方式優化分頁算法。table

上述每次測試都重啓mysqld實例,而且加了SQL_NO_CACHE,以保證每次都是直接數據文件或索引文件中讀取。若是數據通過預熱後,查詢效率會必定程度提高,但但上述相應的效率提高比例仍是基本一致的。

2014/07/28後記更新:

其實若是是不帶任何條件的分頁,就不必用這麼麻煩的方法了,能夠採用對主鍵採用範圍檢索的方法,例如參考這篇:Advance for MySQL Pagination

相關文章
相關標籤/搜索