在互聯網應用中,流量洪峯是常有的事情。在應對流量洪峯時,通用的處理模式通常有排隊、限流,這樣能夠很是直接有效的保護系統,防止系統被打爆。另外,經過限流技術手段,可讓整個系統的運行更加平穩。今天要與你們分享一下限流算法和C#版本的組件。算法
1、令牌桶算法:網絡
令牌桶算法的基本過程以下:ui
工做過程包括3個階段:產生令牌、消耗令牌和判斷數據包是否經過。其中涉及到2個參數:令牌產生的速率和令牌桶的大小,這個過程的具體工做以下。this
下面是C#的一個實現方式spa
class TokenBucketLimitingService: ILimitingService
{
private LimitedQueue<object> limitedQueue = null;
private CancellationTokenSource cancelToken;
private Task task = null;
private int maxTPS;
private int limitSize;
private object lckObj = new object();
public TokenBucketLimitingService(int maxTPS, int limitSize)
{
this.limitSize = limitSize;
this.maxTPS = maxTPS;線程if (this.limitSize <= 0)
this.limitSize = 100;
if(this.maxTPS <=0)
this.maxTPS = 1;3dlimitedQueue = new LimitedQueue<object>(limitSize);
for (int i = 0; i < limitSize; i++)
{
limitedQueue.Enqueue(new object());
}
cancelToken = new CancellationTokenSource();
task = Task.Factory.StartNew(new Action(TokenProcess), cancelToken.Token);
}對象/// <summary>
/// 定時消息令牌
/// </summary>
private void TokenProcess()
{
int sleep = 1000 / maxTPS;
if (sleep == 0)
sleep = 1;blogDateTime start = DateTime.Now;
while (cancelToken.Token.IsCancellationRequested ==false)
{
try
{
lock (lckObj)
{
limitedQueue.Enqueue(new object());
}
}
catch
{
}
finally
{
if (DateTime.Now - start < TimeSpan.FromMilliseconds(sleep))
{
int newSleep = sleep - (int)(DateTime.Now - start).TotalMilliseconds;
if (newSleep > 1)
Thread.Sleep(newSleep - 1); //作一下時間上的補償
}
start = DateTime.Now;
}
}
}資源public void Dispose()
{
cancelToken.Cancel();
}/// <summary>
/// 請求令牌
/// </summary>
/// <returns>true:獲取成功,false:獲取失敗</returns>
public bool Request()
{
if (limitedQueue.Count <= 0)
return false;
lock (lckObj)
{
if (limitedQueue.Count <= 0)
return false;object data = limitedQueue.Dequeue();
if (data == null)
return false;
}return true;
}
}
public interface ILimitingService:IDisposable
{
/// <summary>
/// 申請流量處理
/// </summary>
/// <returns>true:獲取成功,false:獲取失敗</returns>
bool Request();
}
public class LimitingFactory
{
/// <summary>
/// 建立限流服務對象
/// </summary>
/// <param name="limitingType">限流模型</param>
/// <param name="maxQPS">最大QPS</param>
/// <param name="limitSize">最大可用票據數</param>
public static ILimitingService Build(LimitingType limitingType = LimitingType.TokenBucket, int maxQPS = 100, int limitSize = 100)
{
switch (limitingType)
{
case LimitingType.TokenBucket:
default:
return new TokenBucketLimitingService(maxQPS, limitSize);
case LimitingType.LeakageBucket:
return new LeakageBucketLimitingService(maxQPS, limitSize);
}
}
}
/// <summary>
/// 限流模式
/// </summary>
public enum LimitingType
{
TokenBucket,//令牌桶模式
LeakageBucket//漏桶模式
}
public class LimitedQueue<T> : Queue<T>
{
private int limit = 0;
public const string QueueFulled = "TTP-StreamLimiting-1001";public int Limit
{
get { return limit; }
set { limit = value; }
}public LimitedQueue()
: this(0)
{ }public LimitedQueue(int limit)
: base(limit)
{
this.Limit = limit;
}public new bool Enqueue(T item)
{
if (limit > 0 && this.Count >= this.Limit)
{
return false;
}
base.Enqueue(item);
return true;
}
}
調用方法:
var service = LimitingFactory.Build(LimitingType.TokenBucket, 500, 200);
while (true)
{
var result = service.Request();
//若是返回true,說明能夠進行業務處理,不然須要繼續等待
if (result)
{
//業務處理......
}
else
Thread.Sleep(1);
}
2、漏桶算法
聲明一個固定容量的桶,每接受到一個請求向桶中添加一個令牌,當令牌桶達到上線後請求丟棄或等待,具體算法以下:
工做過程也包括3個階段:產生令牌、消耗令牌和判斷數據包是否經過。其中涉及到2個參數:令牌自動消費的速率和令牌桶的大小,個過程的具體工做以下。
C#的一個實現方式:
class LeakageBucketLimitingService: ILimitingService
{
private LimitedQueue<object> limitedQueue = null;
private CancellationTokenSource cancelToken;
private Task task = null;
private int maxTPS;
private int limitSize;
private object lckObj = new object();
public LeakageBucketLimitingService(int maxTPS, int limitSize)
{
this.limitSize = limitSize;
this.maxTPS = maxTPS;if (this.limitSize <= 0)
this.limitSize = 100;
if (this.maxTPS <= 0)
this.maxTPS = 1;limitedQueue = new LimitedQueue<object>(limitSize);
cancelToken = new CancellationTokenSource();
task = Task.Factory.StartNew(new Action(TokenProcess), cancelToken.Token);
}private void TokenProcess()
{
int sleep = 1000 / maxTPS;
if (sleep == 0)
sleep = 1;DateTime start = DateTime.Now;
while (cancelToken.Token.IsCancellationRequested == false)
{
try
{if (limitedQueue.Count > 0)
{
lock (lckObj)
{
if (limitedQueue.Count > 0)
limitedQueue.Dequeue();
}
}
}
catch
{
}
finally
{
if (DateTime.Now - start < TimeSpan.FromMilliseconds(sleep))
{
int newSleep = sleep - (int)(DateTime.Now - start).TotalMilliseconds;
if (newSleep > 1)
Thread.Sleep(newSleep - 1); //作一下時間上的補償
}
start = DateTime.Now;
}
}
}public void Dispose()
{
cancelToken.Cancel();
}public bool Request()
{
if (limitedQueue.Count >= limitSize)
return false;
lock (lckObj)
{
if (limitedQueue.Count >= limitSize)
return false;return limitedQueue.Enqueue(new object());
}
}
}
調用方法:
var service = LimitingFactory.Build(LimitingType.LeakageBucket, 500, 200);
while (true)
{
var result = service.Request();
//若是返回true,說明能夠進行業務處理,不然須要繼續等待
if (result)
{
//業務處理......
}
else
Thread.Sleep(1);
}
兩類限流算法雖然很是類似,可是仍是有些區別的,供你們參考!