深度學習Keras框架筆記之TimeDistributedDense類使用方法筆記python
例: 網絡
keras.layers.core.TimeDistributedDense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None, input_length=None)
這是一個基於時間維度的全鏈接層。主要就是用來構建RNN(遞歸神經網絡)的,可是在構建RNN時須要設置return_sequences=True。框架
inputshape: 3維 tensor(nb_samples, timesteps,input_dim)函數
參數:學習
# input shape: (nb_samples, timesteps,10) model.add(LSTM(5, return_sequences=True, input_dim=10)) # output shape: (nb_samples, timesteps, 5) model.add(TimeDistributedDense(15)) # output shape:(nb_samples, timesteps, 15)