http://blog.csdn.net/w200221626/article/details/52064976算法
/// <summary> /// 動態生產有規律的ID Snowflake算法是Twitter的工程師爲實現遞增而不重複的ID實現的 /// http://blog.csdn.net/w200221626/article/details/52064976 /// C# 實現 Snowflake算法 /// </summary> public class Snowflake { private static long machineId;//機器ID private static long datacenterId = 0L;//數據ID private static long sequence = 0L;//計數從零開始 private static long twepoch = 687888001020L; //惟一時間隨機量 private static long machineIdBits = 5L; //機器碼字節數 private static long datacenterIdBits = 5L;//數據字節數 public static long maxMachineId = -1L ^ -1L << (int)machineIdBits; //最大機器ID private static long maxDatacenterId = -1L ^ (-1L << (int)datacenterIdBits);//最大數據ID private static long sequenceBits = 12L; //計數器字節數,12個字節用來保存計數碼 private static long machineIdShift = sequenceBits; //機器碼數據左移位數,就是後面計數器佔用的位數 private static long datacenterIdShift = sequenceBits + machineIdBits; private static long timestampLeftShift = sequenceBits + machineIdBits + datacenterIdBits; //時間戳左移動位數就是機器碼+計數器總字節數+數據字節數 public static long sequenceMask = -1L ^ -1L << (int)sequenceBits; //一微秒內能夠產生計數,若是達到該值則等到下一微妙在進行生成 private static long lastTimestamp = -1L;//最後時間戳 private static object syncRoot = new object();//加鎖對象 static Snowflake snowflake; public static Snowflake Instance() { if (snowflake == null) snowflake = new Snowflake(); return snowflake; } public Snowflake() { Snowflakes(0L, -1); } public Snowflake(long machineId) { Snowflakes(machineId, -1); } public Snowflake(long machineId, long datacenterId) { Snowflakes(machineId, datacenterId); } private void Snowflakes(long machineId, long datacenterId) { if (machineId >= 0) { if (machineId > maxMachineId) { throw new Exception("機器碼ID非法"); } Snowflake.machineId = machineId; } if (datacenterId >= 0) { if (datacenterId > maxDatacenterId) { throw new Exception("數據中心ID非法"); } Snowflake.datacenterId = datacenterId; } } /// <summary> /// 生成當前時間戳 /// </summary> /// <returns>毫秒</returns> private static long GetTimestamp() { //讓他2000年開始 return (long)(DateTime.UtcNow - new DateTime(2000, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds; } /// <summary> /// 獲取下一微秒時間戳 /// </summary> /// <param name="lastTimestamp"></param> /// <returns></returns> private static long GetNextTimestamp(long lastTimestamp) { long timestamp = GetTimestamp(); int count = 0; while (timestamp <= lastTimestamp)//這裏獲取新的時間,可能會有錯,這算法與comb同樣對機器時間的要求很嚴格 { count++; if (count > 10) throw new Exception("機器的時間可能不對"); Thread.Sleep(1); timestamp = GetTimestamp(); } return timestamp; } /// <summary> /// 獲取長整形的ID /// </summary> /// <returns></returns> public long GetId() { lock (syncRoot) { long timestamp = GetTimestamp(); if (Snowflake.lastTimestamp == timestamp) { //同一微妙中生成ID sequence = (sequence + 1) & sequenceMask; //用&運算計算該微秒內產生的計數是否已經到達上限 if (sequence == 0) { //一微妙內產生的ID計數已達上限,等待下一微妙 timestamp = GetNextTimestamp(Snowflake.lastTimestamp); } } else { //不一樣微秒生成ID sequence = 0L; } if (timestamp < lastTimestamp) { throw new Exception("時間戳比上一次生成ID時時間戳還小,故異常"); } Snowflake.lastTimestamp = timestamp; //把當前時間戳保存爲最後生成ID的時間戳 long Id = ((timestamp - twepoch) << (int)timestampLeftShift) | (datacenterId << (int)datacenterIdShift) | (machineId << (int)machineIdShift) | sequence; return Id; } } }
[TestClass] public class SnowflakeUnitTest1 { /// <summary> /// 動態生產有規律的ID Snowflake算法是Twitter的工程師爲實現遞增而不重複的ID實現的 /// </summary> [TestMethod] public void SnowflakeTestMethod1() { var ids = new List<long>(); for (int i = 0; i < 1000000; i++)//測試同時100W有序ID { ids.Add(Snowflake.Instance().GetId()); } for (int i = 0; i < ids.Count - 1; i++) { Assert.IsTrue(ids[i] < ids[i+1]); } } }
namespace ConsoleApplicationTester { class Program { static void Main(string[] args) { for (int i = 0; i < 1000; i++) { Console.WriteLine("開始執行 " + DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:ffffff") + " " + Snowflake.Instance().GetId()); Console.WriteLine("Snowflake.maxMachineId:" + Snowflake.maxMachineId); } } } }