兩者的主要區別在於:markdown
tf.Variable:主要在於一些可訓練變量(trainable variables),好比模型的權重(weights,W)或者偏執值(bias);函數
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1./math.sqrt(float(IMAGE_PIXELS)), name='weights') ) biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
tf.placeholder:用於獲得傳遞進來的真實的訓練樣本:post
images_placeholder = tf.placeholder(tf.float32, shape=[batch_size, IMAGE_PIXELS]) labels_placeholder = tf.placeholder(tf.int32, shape=[batch_size])
以下則是兩者真實的使用場景:ui
for step in range(FLAGS.max_steps): feed_dict = { images_placeholder = images_feed, labels_placeholder = labels_feed } _,loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
當執行這些操做時,tf.Variable 的值將會改變,也即被修改,這也是其名稱的來源(variable,變量)。spa
What’s the difference between tf.placeholder and tf.Variablecode