public class HashAlgorithms { /** * 加法hash * @param key 字符串 * @param prime 一個質數 * @return hash結果 */ public static int additiveHash(String key, int prime) { int hash, i; for (hash = key.length(), i = 0; i < key.length(); i++) hash += key.charAt(i); return (hash % prime); } /** * 旋轉hash * @param key 輸入字符串 * @param prime 質數 * @return hash值 */ public static int rotatingHash(String key, int prime) { int hash, i; for (hash=key.length(), i=0; i<key.length(); ++i) hash = (hash<<4)^(hash>>28)^key.charAt(i); return (hash % prime); // return (hash ^ (hash>>10) ^ (hash>>20)); } // 替代: // 使用:hash = (hash ^ (hash>>10) ^ (hash>>20)) & mask; // 替代:hash %= prime; /** * MASK值,隨便找一個值,最好是質數 */ static int M_MASK = 0x8765fed1; /** * 一次一個hash * @param key 輸入字符串 * @return 輸出hash值 */ public static int oneByOneHash(String key) { int hash, i; for (hash=0, i=0; i<key.length(); ++i) { hash += key.charAt(i); hash += (hash << 10); hash ^= (hash >> 6); } hash += (hash << 3); hash ^= (hash >> 11); hash += (hash << 15); // return (hash & M_MASK); return hash; } /** * Bernstein's hash * @param key 輸入字節數組 * @param level 初始hash常量 * @return 結果hash */ public static int bernstein(String key) { int hash = 0; int i; for (i=0; i<key.length(); ++i) hash = 33*hash + key.charAt(i); return hash; } // //// Pearson's Hash // char pearson(char[]key, ub4 len, char tab[256]) // { // char hash; // ub4 i; // for (hash=len, i=0; i<len; ++i) // hash=tab[hash^key[i]]; // return (hash); // } //// CRC Hashing,計算crc,具體代碼見其餘 // ub4 crc(char *key, ub4 len, ub4 mask, ub4 tab[256]) // { // ub4 hash, i; // for (hash=len, i=0; i<len; ++i) // hash = (hash >> 8) ^ tab[(hash & 0xff) ^ key[i]]; // return (hash & mask); // } /** * Universal Hashing */ public static int universal(char[]key, int mask, int[] tab) { int hash = key.length, i, len = key.length; for (i=0; i<(len<<3); i+=8) { char k = key[i>>3]; if ((k&0x01) == 0) hash ^= tab[i+0]; if ((k&0x02) == 0) hash ^= tab[i+1]; if ((k&0x04) == 0) hash ^= tab[i+2]; if ((k&0x08) == 0) hash ^= tab[i+3]; if ((k&0x10) == 0) hash ^= tab[i+4]; if ((k&0x20) == 0) hash ^= tab[i+5]; if ((k&0x40) == 0) hash ^= tab[i+6]; if ((k&0x80) == 0) hash ^= tab[i+7]; } return (hash & mask); } /** * Zobrist Hashing */ public static int zobrist( char[] key,int mask, int[][] tab) { int hash, i; for (hash=key.length, i=0; i<key.length; ++i) hash ^= tab[i][key[i]]; return (hash & mask); } // LOOKUP3 // 見Bob Jenkins(3).c文件 // 32位FNV算法 static int M_SHIFT = 0; /** * 32位的FNV算法 * @param data 數組 * @return int值 */ public static int FNVHash(byte[] data) { int hash = (int)2166136261L; for(byte b : data) hash = (hash * 16777619) ^ b; if (M_SHIFT == 0) return hash; return (hash ^ (hash >> M_SHIFT)) & M_MASK; } /** * 改進的32位FNV算法1 * @param data 數組 * @return int值 */ public static int FNVHash1(byte[] data) { final int p = 16777619; int hash = (int)2166136261L; for(byte b:data) hash = (hash ^ b) * p; hash += hash << 13; hash ^= hash >> 7; hash += hash << 3; hash ^= hash >> 17; hash += hash << 5; return hash; } /** * 改進的32位FNV算法1 * @param data 字符串 * @return int值 */ public static int FNVHash1(String data) { final int p = 16777619; int hash = (int)2166136261L; for(int i=0;i<data.length();i++) hash = (hash ^ data.charAt(i)) * p; hash += hash << 13; hash ^= hash >> 7; hash += hash << 3; hash ^= hash >> 17; hash += hash << 5; return hash; } /** * Thomas Wang的算法,整數hash */ public static int intHash(int key) { key += ~(key << 15); key ^= (key >>> 10); key += (key << 3); key ^= (key >>> 6); key += ~(key << 11); key ^= (key >>> 16); return key; } /** * RS算法hash * @param str 字符串 */ public static int RSHash(String str) { int b = 378551; int a = 63689; int hash = 0; for(int i = 0; i < str.length(); i++) { hash = hash * a + str.charAt(i); a = a * b; } return (hash & 0x7FFFFFFF); } /* End Of RS Hash Function */ /** * JS算法 */ public static int JSHash(String str) { int hash = 1315423911; for(int i = 0; i < str.length(); i++) { hash ^= ((hash << 5) + str.charAt(i) + (hash >> 2)); } return (hash & 0x7FFFFFFF); } /* End Of JS Hash Function */ /** * PJW算法 */ public static int PJWHash(String str) { int BitsInUnsignedInt = 32; int ThreeQuarters = (BitsInUnsignedInt * 3) / 4; int OneEighth = BitsInUnsignedInt / 8; int HighBits = 0xFFFFFFFF << (BitsInUnsignedInt - OneEighth); int hash = 0; int test = 0; for(int i = 0; i < str.length();i++) { hash = (hash << OneEighth) + str.charAt(i); if((test = hash & HighBits) != 0) { hash = (( hash ^ (test >> ThreeQuarters)) & (~HighBits)); } } return (hash & 0x7FFFFFFF); } /* End Of P. J. Weinberger Hash Function */ /** * ELF算法 */ public static int ELFHash(String str) { int hash = 0; int x = 0; for(int i = 0; i < str.length(); i++) { hash = (hash << 4) + str.charAt(i); if((x = (int)(hash & 0xF0000000L)) != 0) { hash ^= (x >> 24); hash &= ~x; } } return (hash & 0x7FFFFFFF); } /* End Of ELF Hash Function */ /** * BKDR算法 */ public static int BKDRHash(String str) { int seed = 131; // 31 131 1313 13131 131313 etc.. int hash = 0; for(int i = 0; i < str.length(); i++) { hash = (hash * seed) + str.charAt(i); } return (hash & 0x7FFFFFFF); } /* End Of BKDR Hash Function */ /** * SDBM算法 */ public static int SDBMHash(String str) { int hash = 0; for(int i = 0; i < str.length(); i++) { hash = str.charAt(i) + (hash << 6) + (hash << 16) - hash; } return (hash & 0x7FFFFFFF); } /* End Of SDBM Hash Function */ /** * DJB算法 */ public static int DJBHash(String str) { int hash = 5381; for(int i = 0; i < str.length(); i++) { hash = ((hash << 5) + hash) + str.charAt(i); } return (hash & 0x7FFFFFFF); } /* End Of DJB Hash Function */ /** * DEK算法 */ public static int DEKHash(String str) { int hash = str.length(); for(int i = 0; i < str.length(); i++) { hash = ((hash << 5) ^ (hash >> 27)) ^ str.charAt(i); } return (hash & 0x7FFFFFFF); }
各類hash函數的實現算法
其中比較有名的是elfhash函數。它對字串數組的算hash方式爲數組
將一個字符串的數組中的每一個元素依次按前四位與上一個元素的低四位相與,組成一個長整形,若是長整的高四位大於零,那麼就將它折回再與長整的低四位相異或,這樣最後獲得的長整對HASH表長取餘,獲得在HASH中的位置。函數
/** * ELF算法 */ public static int ELFHash(String str) { int hash = 0; int x = 0; for(int i = 0; i < str.length(); i++) { hash = (hash << 4) + str.charAt(i); if((x = (int)(hash & 0xF0000000L)) != 0) { hash ^= (x >> 24); hash &= ~x; } }
}
下面這個是全部最靠近2的冪次方的質數表,這些質數能夠用來作hash表的擴增spa
glib質數表 static const gint prime_mod [] = { 1, /* For 1 << 0 */ 2, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, /* For 1 << 16 */ 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, 1073741789, 2147483647 /* For 1 << 31 */ };