USM銳化之openCV實現,附贈調整對比度函數

源地址:http://www.cnblogs.com/easymind223/archive/2012/07/03/2575277.htmlhtml

 經常使用Photoshop的玩家都知道Unsharp Mask(USM)銳化,它是一種加強圖像邊緣的銳化算法,原理在此處,若是你想使用這個算法,強烈推薦看一下。本文進行一下簡單的介紹,USM銳化一共分爲三步,第一步生成原始圖片src的模糊圖片和高對比度圖片,記爲blur和contrast.第二,把src和blur做差,獲得一張差分圖片,記爲diff,它就是下圖的UnsharpMask。而後把src和contras按必定的比例相加,這個比例由diff控制,最終獲得銳化圖片。USM有一個缺點,銳化後最大和最小的像素值會超過原始圖片,以下圖紅色虛線和白色實線所示。算法

 
代碼以下:
複製代碼
void MyTreasureBox::UnsharpMask(const IplImage* src, IplImage* dst, float amount, float radius, uchar threshold, int contrast) { if(!src)return ; int imagewidth = src->width; int imageheight = src->height; int channel = src->nChannels; IplImage* blurimage = cvCreateImage(cvSize(imagewidth,imageheight), src->depth, channel); IplImage* DiffImage = cvCreateImage(cvSize(imagewidth,imageheight), 8, channel); //原圖的高對比度圖像 IplImage* highcontrast = cvCreateImage(cvSize(imagewidth,imageheight), 8, channel); AdjustContrast(src, highcontrast, contrast); //原圖的模糊圖像  cvSmooth(src, blurimage, CV_GAUSSIAN, radius); //原圖與模糊圖做差 for (int y=0; y<imageheight; y++) { for (int x=0; x<imagewidth; x++) { CvScalar ori = cvGet2D(src, y, x); CvScalar blur = cvGet2D(blurimage, y, x); CvScalar val; val.val[0] = abs(ori.val[0] - blur.val[0]); val.val[1] = abs(ori.val[1] - blur.val[1]); val.val[2] = abs(ori.val[2] - blur.val[2]); cvSet2D(DiffImage, y, x, val); } } //銳化 for (int y=0; y<imageheight; y++) { for (int x=0; x<imagewidth; x++) { CvScalar hc = cvGet2D(highcontrast, y, x); CvScalar diff = cvGet2D(DiffImage, y, x); CvScalar ori = cvGet2D(src, y, x); CvScalar val; for (int k=0; k<channel; k++) { if (diff.val[k] > threshold) { //最終圖像 = 原始*(1-r) + 高對比*r val.val[k] = ori.val[k] *(100-amount) + hc.val[k] *amount; val.val[k] /= 100; } else { val.val[k] = ori.val[k]; } } cvSet2D(dst, y, x, val); } } cvReleaseImage(&blurimage); cvReleaseImage(&DiffImage); }
複製代碼

 

其中用到一個調整圖像對比度的函數函數

複製代碼
void MyTreasureBox::AdjustContrast(const IplImage* src, IplImage* dst, int contrast)
{
    if (!src)return ;

    int imagewidth = src->width;
    int imageheight = src->height;
    int channel = src->nChannels;

    //求原圖均值
    CvScalar mean = {0,0,0,0};
    for (int y=0; y<imageheight; y++)
    {
        for (int x=0; x<imagewidth; x++)
        {                     
            CvScalar ori = cvGet2D(src, y, x);
            for (int k=0; k<channel; k++)
            {
                mean.val[k] += ori.val[k];
            }         
        }
    }
    for (int k=0; k<channel; k++)
    {
        mean.val[k] /= imagewidth * imageheight;
    }

    //調整對比度
    if (contrast <= -255)    
    {
        //當增量等於-255時,是圖像對比度的下端極限,此時,圖像RGB各份量都等於閥值,圖像呈全灰色,灰度圖上只有1條線,即閥值灰度;
        for (int y=0; y<imageheight; y++)
        {
            for (int x=0; x<imagewidth; x++)
            {
                cvSet2D(dst, y, x, mean);
            }
        }
    } 
    else if(contrast > -255 &&  contrast <= 0)
    {
        //(1)nRGB = RGB + (RGB - Threshold) * Contrast / 255
        // 當增量大於-255且小於0時,直接用上面的公式計算圖像像素各份量
        //公式中,nRGB表示調整後的R、G、B份量,RGB表示原圖R、G、B份量,Threshold爲給定的閥值,Contrast爲處理過的對比度增量。
        for (int y=0; y<imageheight; y++)
        {
            for (int x=0; x<imagewidth; x++)
            {
                CvScalar nRGB;
                CvScalar ori = cvGet2D(src, y, x);
                for (int k=0; k<channel; k++)
                {
                    nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *contrast /255;
                }
                cvSet2D(dst, y, x, nRGB);
            }
        }
    }
    else if(contrast >0 && contrast <255)
    {
        //當增量大於0且小於255時,則先按下面公式(2)處理增量,而後再按上面公式(1)計算對比度:
        //(2)、nContrast = 255 * 255 / (255 - Contrast) - 255
        //公式中的nContrast爲處理後的對比度增量,Contrast爲給定的對比度增量。                

        CvScalar nRGB;
        int nContrast = 255 *255 /(255 - contrast) - 255;

        for (int y=0; y<imageheight; y++)
        {
            for (int x=0; x<imagewidth; x++)
            {
                CvScalar ori = cvGet2D(src, y, x);
                for (int k=0; k<channel; k++)
                {
                    nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *nContrast /255;
                }
                cvSet2D(dst, y, x, nRGB);
            }
        }
    }
    else
    {
        //當增量等於 255時,是圖像對比度的上端極限,實際等於設置圖像閥值,圖像由最多八種顏色組成,灰度圖上最多8條線,
        //即紅、黃、綠、青、藍、紫及黑與白;        
        for (int y=0; y<imageheight; y++)
        {
            for (int x=0; x<imagewidth; x++)
            {
                CvScalar rgb;
                CvScalar ori = cvGet2D(src, y, x);
                for (int k=0; k<channel; k++)
                {
                    if (ori.val[k] > mean.val[k])
                    {
                        rgb.val[k] = 255;
                    }
                    else
                    {
                        rgb.val[k] = 0;
                    }                    
                }
                cvSet2D(dst, y, x, rgb);
            }
        }
    }
}
複製代碼
相關文章
相關標籤/搜索