IK的一些操做:php
1.查看集羣健康情況 GET /_cat/health?v&pretty 2.查看my_index的mapping和setting的相關信息 GET /my_index?pretty 3.查看全部的index GET /_cat/indices?v&pretty 4.刪除 my_index_new DELETE /my_index_new?pretty&pretty
先測試ik分詞器的基本功能html
GET _analyze?pretty { "analyzer": "ik_smart", "text": "中華人民共和國國歌" }
結果:java
{ "tokens": [ { "token": "中華人民共和國", "start_offset": 0, "end_offset": 7, "type": "CN_WORD", "position": 0 }, { "token": "國歌", "start_offset": 7, "end_offset": 9, "type": "CN_WORD", "position": 1 } ] }
能夠看出:經過ik_smart明顯很智能的將 "中華人民共和國國歌"進行了正確的分詞。nginx
另一個例子:git
GET _analyze?pretty { "analyzer": "ik_smart", "text": "王者榮耀是最好玩的遊戲" }
結果:github
{ "tokens": [ { "token": "王者榮耀", "start_offset": 0, "end_offset": 4, "type": "CN_WORD", "position": 0 }, { "token": "最", "start_offset": 5, "end_offset": 6, "type": "CN_CHAR", "position": 1 }, { "token": "好玩", "start_offset": 6, "end_offset": 8, "type": "CN_WORD", "position": 2 }, { "token": "遊戲", "start_offset": 9, "end_offset": 11, "type": "CN_WORD", "position": 3 } ] }
若是結果跟個人不同,那就對了,中文ik分詞詞庫裏面將「王者榮耀」是分開的,可是咱們又不肯意將其分開,根據github上面的指示能夠配置app
IKAnalyzer.cfg.xml 目錄在:elasticsearch-5.4.0/plugins/ik/configelasticsearch
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 擴展配置</comment> <!--用戶能夠在這裏配置本身的擴展字典 --> <entry key="ext_dict">custom/mydict.dic;custom/single_word_low_freq.dic</entry> <!--用戶能夠在這裏配置本身的擴展中止詞字典--> <entry key="ext_stopwords">custom/ext_stopword.dic</entry> <!--用戶能夠在這裏配置遠程擴展字典,下面是配置在nginx路徑下面的 --> <entry key="remote_ext_dict">http://tagtic-slave01:82/HotWords.php</entry> <!--用戶能夠在這裏配置遠程擴展中止詞字典--> <!-- <entry key="remote_ext_stopwords">words_location</entry> --> <entry key="remote_ext_stopwords">http://tagtic-slave01:82/StopWords.php</entry> </properties>
能夠看到HotWords.phpide
<?php $s = <<<'EOF' 王者榮耀 陰陽師 EOF; header("Content-type: text/html; charset=utf-8"); header('Last-Modified: '.gmdate('D, d M Y H:i:s', time()).' GMT', true, 200); header('ETag: "5816f349-19"'); echo $s; ?>
配置完了以後就能夠看到剛纔的結果了學習
順便測試一下ik_max_word
GET /index/_analyze?pretty { "analyzer": "ik_max_word", "text": "中華人民共和國國歌" }
結果看看就好了
{ "tokens": [ { "token": "中華人民共和國", "start_offset": 0, "end_offset": 7, "type": "CN_WORD", "position": 0 }, { "token": "中華人民", "start_offset": 0, "end_offset": 4, "type": "CN_WORD", "position": 1 }, { "token": "中華", "start_offset": 0, "end_offset": 2, "type": "CN_WORD", "position": 2 }, { "token": "華人", "start_offset": 1, "end_offset": 3, "type": "CN_WORD", "position": 3 }, { "token": "人民共和國", "start_offset": 2, "end_offset": 7, "type": "CN_WORD", "position": 4 }, { "token": "人民", "start_offset": 2, "end_offset": 4, "type": "CN_WORD", "position": 5 }, { "token": "共和國", "start_offset": 4, "end_offset": 7, "type": "CN_WORD", "position": 6 }, { "token": "共和", "start_offset": 4, "end_offset": 6, "type": "CN_WORD", "position": 7 }, { "token": "國", "start_offset": 6, "end_offset": 7, "type": "CN_CHAR", "position": 8 }, { "token": "國歌", "start_offset": 7, "end_offset": 9, "type": "CN_WORD", "position": 9 } ] }
再看看github上面的一個例子
POST /index/fulltext/_mapping { "fulltext": { "_all": { "analyzer": "ik_smart" }, "properties": { "content": { "type": "text" } } } }
存一些值
POST /index/fulltext/1 { "content": "美國留給伊拉克的是個爛攤子嗎" } POST /index/fulltext/2 { "content": "公安部:各地校車將享最高路權" } POST /index/fulltext/3 { "content": "中韓漁警衝突調查:韓警平均天天扣1艘中國漁船" } POST /index/fulltext/4 { "content": "中國駐洛杉磯領事館遭亞裔男子槍擊 嫌犯已自首" }
取值
POST /index/fulltext/_search { "query": { "match": { "content": "中國" } } }
結果
{ "took": 3, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 3, "max_score": 1.0869478, "hits": [ { "_index": "index", "_type": "fulltext", "_id": "4", "_score": 1.0869478, "_source": { "content": "中國駐洛杉磯領事館遭亞裔男子槍擊 嫌犯已自首" } }, { "_index": "index", "_type": "fulltext", "_id": "3", "_score": 0.61094594, "_source": { "content": "中韓漁警衝突調查:韓警平均天天扣1艘中國漁船" } }, { "_index": "index", "_type": "fulltext", "_id": "1", "_score": 0.27179778, "_source": { "content": "美國留給伊拉克的是個爛攤子嗎" } } ] } }
es會按照分詞進行索引,而後根據你的查詢條件按照分數的高低給出結果
官網有一個例子,能夠學習學習:https://github.com/medcl/elasticsearch-analysis-ik
看另外一個有趣的例子
PUT /index1 { "settings": { "refresh_interval": "5s", "number_of_shards" : 1, "number_of_replicas" : 0 }, "mappings": { "_default_":{ "_all": { "enabled": false } }, "resource": { "dynamic": false, "properties": { "title": { "type": "text", "fields": { "cn": { "type": "text", "analyzer": "ik_smart" }, "en": { "type": "text", "analyzer": "english" } } } } } } }
field的做用有二:
1.好比一個string類型能夠映射成text類型來進行全文檢索,keyword類型做爲排序和聚合; 2 至關於起了個別名,使用不一樣的分類器
批量插入值
POST /_bulk { "create": { "_index": "index1", "_type": "resource", "_id": 1 } } { "title": "周星馳最新電影" } { "create": { "_index": "index1", "_type": "resource", "_id": 2 } } { "title": "周星馳最好看的新電影" } { "create": { "_index": "index1", "_type": "resource", "_id": 3 } } { "title": "周星馳最新電影,最好,新電影" } { "create": { "_index": "index1", "_type": "resource", "_id": 4 } } { "title": "最最最最好的新新新新電影" } { "create": { "_index": "index1", "_type": "resource", "_id": 5 } } { "title": "I'm not happy about the foxes" }
取值
POST /index1/resource/_search { "query": { "multi_match": { "type": "most_fields", "query": "fox", "fields": "title" } } }
結果
{ "took": 1, "timed_out": false, "_shards": { "total": 1, "successful": 1, "failed": 0 }, "hits": { "total": 0, "max_score": null, "hits": [] } }
緣由,使用title裏面查詢fox,而title使用的是Standard標準分詞器,被索引的是foxes,因此不會有結果,下面這種狀況就會有結果了
POST /index1/resource/_search { "query": { "multi_match": { "type": "most_fields", "query": "fox", "fields": "title.en" } } }
結果就不列出來了,由於title.en使用的是english分詞器
對比一下下面的輸出,體會一下field的使用
GET /index1/resource/_search { "query": { "match": { "title.cn": "the最好遊戲" } } } POST /index1/resource/_search { "query": { "multi_match": { "type": "most_fields", "query": "the最新遊戲", "fields": [ "title", "title.cn", "title.en" ] } } } POST /index1/resource/_search { "query": { "multi_match": { "type": "most_fields", "query": "the最新", "fields": "title.cn" } } }
根據結果體會體會用法
下面使用「王者榮耀作測試」,這裏能夠看到前面配置的HotWords.php是一把雙刃劍,將「王者榮耀」放在裏面以後,「王者榮耀」這個詞就是一個總體,不會被切分紅「王者」和「榮耀」,可是就是要搜索王者怎麼辦呢,這裏就體現出fields的強大了,具體看下面
先存入數據
POST /_bulk { "create": { "_index": "index1", "_type": "resource", "_id": 6 } } { "title": "王者榮耀最好玩的遊戲" } { "create": { "_index": "index1", "_type": "resource", "_id": 7 } } { "title": "王者榮耀最好玩的新遊戲" } { "create": { "_index": "index1", "_type": "resource", "_id": 8 } } { "title": "王者榮耀最新遊戲,最好玩,新遊戲" } { "create": { "_index": "index1", "_type": "resource", "_id": 9 } } { "title": "最最最最好的新新新新遊戲" } { "create": { "_index": "index1", "_type": "resource", "_id": 10 } } { "title": "I'm not happy about the foxes" }
查詢
POST /index1/resource/_search { "query": { "multi_match": { "type": "most_fields", "query": "王者榮耀", "fields": "title.cn" } } } #下面會沒有結果返回 POST /index1/resource/_search { "query": { "multi_match": { "type": "most_fields", "query": "王者", "fields": "title.cn" } } } POST /index1/resource/_search { "query": { "multi_match": { "type": "most_fields", "query": "王者", "fields": "title" } } }
對比結果就能夠一目瞭然了,結果略!
因此一開始業務的需求要至關了解,纔能有好的映射(mapping)被設計,搜索的時候也會省事很多