Host Componets | Quantity | Description |
RAM | 256 | Gigabytes |
CPU | 48 | 8CPUs 6cores |
HDD(Hard Disk Driver) | 36 | 12 * 3T SATA |
Ethernet | 2 | 1 Gigabit Ethernet |
Worker Host Planningnode
to allocate resources on each worker machine.app
Service | Category | CPU(cores) | Memory(MB) | |
OS | 1 | 8192 | ||
CM agent | 1 | 1024 | ||
Others | 0 | 0 | ||
HDFS DataNode | 1 | 1024 | ||
Impala | ||||
HBase | ||||
Solr | ||||
Yarn NodeManager | 1 | 1024 | ||
Available Resources | ||||
Yarn available cores | 176 | |||
Yarn available memory | 250880 | |||
Avaiable = Total - OtherUsedless
Cluster Sizeide
Having defined the specifications for each host in your cluster, enter the number of worker needed to support your business case. To see the benefits of parallel computing, set the number of hosts to a minimum of 10ui
Yarn Configurationthis
yarn.nodemanager.resource.cpu-vcores = 176 spa
yarn.nodemanager.resource.memory-mb = 250880orm
go to http://<ResourceManagerIP>:8088/ to verify the "Memory Total" and "Vcores Total"ip
Vcores Total = 176 * 10ci
Memory Total = 250880 * 10
Container Setting
Yarn Container Configuration Property(Vcores) | Value | Description |
yarn.scheduler.minimum-allocation-vcores | 1 | Minimum vcores reservation for a container |
yarn.scheduler.maximum-allocation-vcores | 32 | Maximum vcores reservation for a container |
yarn.scheduler.increment-allocation-vcores | 1 | Vcore allocation must be a multiple this value |
Yarn Container Configuration Property(Memory) | ||
yarn.scheduler.minimum-allocation-mb | 1024 | Minimum memory reservation for a container |
yarn.scheduler.maximum-allocation-mb | 8192 | Maximum memory reservation for a container |
yarn.scheduler.increment-allocation-mb | 1024 | memory allocation must be a multiple this value |