scrapy-redis是一個基於redis的scrapy組件,經過它能夠快速實現簡單分佈式爬蟲程序,該組件本質上提供了三大功能:html
- scheduler - 調度器
- dupefilter - URL去重規則(被調度器使用)
- pipeline - 數據持久化
scrapy-redis組件
1. URL去重python
定義去重規則(被調度器調用並應用) a. 內部會使用如下配置進行鏈接Redis # REDIS_HOST = 'localhost' # 主機名 # REDIS_PORT = 6379 # 端口 # REDIS_URL = 'redis://user:pass@hostname:9001' # 鏈接URL(優先於以上配置) # REDIS_PARAMS = {} # Redis鏈接參數 默認:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定鏈接Redis的Python模塊 默認:redis.StrictRedis # REDIS_ENCODING = "utf-8" # redis編碼類型 默認:'utf-8' b. 去重規則經過redis的集合完成,集合的Key爲: key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())} 默認配置: DUPEFILTER_KEY = 'dupefilter:%(timestamp)s' c. 去重規則中將url轉換成惟一標示,而後在redis中檢查是否已經在集合中存在 from scrapy.utils import request from scrapy.http import Request req = Request(url='http://www.cnblogs.com/wupeiqi.html') result = request.request_fingerprint(req) print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c PS: - URL參數位置不一樣時,計算結果一致; - 默認請求頭不在計算範圍,include_headers能夠設置指定請求頭 示例: from scrapy.utils import request from scrapy.http import Request req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) """ # Ensure all spiders share same duplicates filter through redis. # DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
2. 調度器redis
""" 調度器,調度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)進行保存請求,而且使用RFPDupeFilter對URL去重 a. 調度器 SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默認使用優先級隊列(默認),其餘:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 調度器中請求存放在redis中的key SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 對保存到redis中的數據進行序列化,默認使用pickle SCHEDULER_PERSIST = True # 是否在關閉時候保留原來的調度器和去重記錄,True=保留,False=清空 SCHEDULER_FLUSH_ON_START = True # 是否在開始以前清空 調度器和去重記錄,True=清空,False=不清空 SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去調度器中獲取數據時,若是爲空,最多等待時間(最後沒數據,未獲取到)。 SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重規則,在redis中保存時對應的key SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類 """ # Enables scheduling storing requests queue in redis. SCHEDULER = "scrapy_redis.scheduler.Scheduler" # Default requests serializer is pickle, but it can be changed to any module # with loads and dumps functions. Note that pickle is not compatible between # python versions. # Caveat: In python 3.x, the serializer must return strings keys and support # bytes as values. Because of this reason the json or msgpack module will not # work by default. In python 2.x there is no such issue and you can use # 'json' or 'msgpack' as serializers. # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # Don't cleanup redis queues, allows to pause/resume crawls. # SCHEDULER_PERSIST = True # Schedule requests using a priority queue. (default) # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # Alternative queues. # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue' # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' # Max idle time to prevent the spider from being closed when distributed crawling. # This only works if queue class is SpiderQueue or SpiderStack, # and may also block the same time when your spider start at the first time (because the queue is empty). # SCHEDULER_IDLE_BEFORE_CLOSE = 10
3. 數據持久化json
2. 定義持久化,爬蟲yield Item對象時執行RedisPipeline a. 將item持久化到redis時,指定key和序列化函數 REDIS_ITEMS_KEY = '%(spider)s:items' REDIS_ITEMS_SERIALIZER = 'json.dumps' b. 使用列表保存item數據
4. 起始URL相關cookie
""" 起始URL相關 a. 獲取起始URL時,去集合中獲取仍是去列表中獲取?True,集合;False,列表 REDIS_START_URLS_AS_SET = False # 獲取起始URL時,若是爲True,則使用self.server.spop;若是爲False,則使用self.server.lpop b. 編寫爬蟲時,起始URL從redis的Key中獲取 REDIS_START_URLS_KEY = '%(name)s:start_urls' """ # If True, it uses redis' ``spop`` operation. This could be useful if you # want to avoid duplicates in your start urls list. In this cases, urls must # be added via ``sadd`` command or you will get a type error from redis. # REDIS_START_URLS_AS_SET = False # Default start urls key for RedisSpider and RedisCrawlSpider. # REDIS_START_URLS_KEY = '%(name)s:start_urls'
scrapy-redis示例
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # # # from scrapy_redis.scheduler import Scheduler # from scrapy_redis.queue import PriorityQueue # SCHEDULER = "scrapy_redis.scheduler.Scheduler" # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默認使用優先級隊列(默認),其餘:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) # SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 調度器中請求存放在redis中的key # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 對保存到redis中的數據進行序列化,默認使用pickle # SCHEDULER_PERSIST = True # 是否在關閉時候保留原來的調度器和去重記錄,True=保留,False=清空 # SCHEDULER_FLUSH_ON_START = False # 是否在開始以前清空 調度器和去重記錄,True=清空,False=不清空 # SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去調度器中獲取數據時,若是爲空,最多等待時間(最後沒數據,未獲取到)。 # SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重規則,在redis中保存時對應的key # SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類 # # # # REDIS_HOST = '10.211.55.13' # 主機名 # REDIS_PORT = 6379 # 端口 # # REDIS_URL = 'redis://user:pass@hostname:9001' # 鏈接URL(優先於以上配置) # # REDIS_PARAMS = {} # Redis鏈接參數 默認:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) # # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定鏈接Redis的Python模塊 默認:redis.StrictRedis # REDIS_ENCODING = "utf-8" # redis編碼類型 默認:'utf-8'
import scrapy class ChoutiSpider(scrapy.Spider): name = "chouti" allowed_domains = ["chouti.com"] start_urls = ( 'http://www.chouti.com/', ) def parse(self, response): for i in range(0,10): yield