Metrics做爲一款監控指標的度量類庫,提供了不少模塊能夠爲第三方庫或者應用提供輔助統計信息。Metrics內部提供了Gauge、Counter、Meter、Histogram、Timer等度量工具類以及Health Check功能。java
metrics-core爲metrics核心庫,定義了各類指標項,須要在pom.xml引用。git
<dependencies>
<dependency>
<groupId>io.dropwizard.metrics</groupId>
<artifactId>metrics-core</artifactId>
<version>3.1.0</version>
</dependency>
</dependencies>
複製代碼
MetricRegistry類是核心容器,內部使用ConcurrentHashMap維護全部監控指標項。 指標註冊核心代碼:github
public <T extends Metric> T register(String name, T metric) throws IllegalArgumentException {
if (metric instanceof MetricSet) {
registerAll(name, (MetricSet) metric);
} else {
final Metric existing = metrics.putIfAbsent(name, metric);
if (existing == null) {
onMetricAdded(name, metric);
} else {
throw new IllegalArgumentException("A metric named " + name + " already exists");
}
}
return metric;
}
複製代碼
每一個指標項都須要有個獨一無二的名字,MetricRegistry類提供了名字生成的方式。除了能夠根據類名來生成名字外,也支持自定義名字。其本質是字符串的拼接。算法
public static String name(String name, String... names) {
final StringBuilder builder = new StringBuilder();
append(builder, name);
if (names != null) {
for (String s : names) {
append(builder, s);
}
}
return builder.toString();
}
public static String name(Class<?> klass, String... names) {
return name(klass.getName(), names);
}
private static void append(StringBuilder builder, String part) {
if (part != null && !part.isEmpty()) {
if (builder.length() > 0) {
builder.append('.');
}
builder.append(part);
}
}
複製代碼
Metrics提供了Reporter接口,用於展現內部的數據指標信息。metrics-core中主要實現了ConsoleReporter、CsvReporter 、Slf4jReporter、JmxReporter。在本文例子中使用ConsoleReporter展現內部指標。bash
對於使用Falcon監控系統的公司,能夠參照ConsoleReporter實現自定義的Reporter,這樣Metrics就能夠無縫集成到公司的監控系統上。app
Gauge主要記錄指標的瞬時值,如服務當前Jvm使用狀況等;dom
public class JvmGaugeTest {
public static void main(String[] args) throws Exception {
MetricRegistry registry = new MetricRegistry();
ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
reporter.start(1, TimeUnit.SECONDS);
MemoryMXBean memoryMXBean = ManagementFactory.getMemoryMXBean();
registry.register("jvm.total.used",
new Gauge<Long>() {
@Override
public Long getValue() {
return memoryMXBean.getHeapMemoryUsage().getUsed()
+ memoryMXBean.getNonHeapMemoryUsage().getUsed();
}
});
while (true) {
Thread.sleep(1000);
}
}
}
複製代碼
代碼運行結果以下:jvm
-- Gauges ----------------------------------------------------------------------
jvm.total.used
value = 16314496
複製代碼
Counter是計數器,能夠對Counter進行增長和減小操做,維護累計的指標。ide
public class CounterTest {
private static Queue<String> queue = new LinkedBlockingQueue<String>();
private static Counter pendingJobs;
private static Random random = new Random();
public static void addJob(String job) {
pendingJobs.inc();
queue.offer(job);
}
public static String takeJob() {
pendingJobs.dec();
return queue.poll();
}
public static void main(String[] args) throws InterruptedException {
MetricRegistry registry = new MetricRegistry();
ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
reporter.start(1, TimeUnit.SECONDS);
pendingJobs = registry.counter("pending.jobs.size");
for (int num = 1; ; num++) {
Thread.sleep(100);
if (random.nextDouble() > 0.8) {
takeJob();
} else {
addJob("Job-" + num);
}
}
}
}
複製代碼
代碼運行結果以下:工具
-- Counters --------------------------------------------------------------------
pending.jobs.size
count = 19
複製代碼
Meter度量事件發生的頻率,統計最近1分鐘、5分鐘、15分鐘的速率。
public class MeterTest {
private static Random random = new Random();
public static void request(Meter meter, int times) {
for (int i = 0; i < times; i++) {
meter.mark();
}
}
public static void main(String[] args) throws InterruptedException {
MetricRegistry registry = new MetricRegistry();
ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
reporter.start(1, TimeUnit.SECONDS);
Meter meterTps = registry.meter("request.tps");
while (true) {
request(meterTps, random.nextInt(10));
Thread.sleep(1000);
}
}
}
複製代碼
代碼運行結果以下:
-- Meters ----------------------------------------------------------------------
request.tps
count = 115
mean rate = 5.00 events/second
1-minute rate = 7.04 events/second
5-minute rate = 7.63 events/second
15-minute rate = 7.74 events/second
複製代碼
Meter參考UNIX系統關於平均負荷load average來設計的,其中使用到了EMA 指數移動平均算法。越近期的數據加權影響力越重。
Histogram統計數據分佈狀況,統計最小值、最大值、平均值、中位數、75分位、90分位、95分位、99分位、99.9分位等數據。
public class HistogramTest {
private static Random random = new Random();
public static void main(String[] args) throws Exception {
MetricRegistry registry = new MetricRegistry();
ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
reporter.start(1, TimeUnit.SECONDS);
Histogram histogram = new Histogram(new UniformReservoir());
registry.register("request.histogram", histogram);
while (true) {
Thread.sleep(1000);
histogram.update(random.nextInt(100));
}
}
}
複製代碼
代碼運行結果以下:
-- Histograms ------------------------------------------------------------------
request.histogram
count = 18
min = 10
max = 98
mean = 53.28
stddev = 29.48
median = 44.50
75% <= 83.50
95% <= 98.00
98% <= 98.00
99% <= 98.00
99.9% <= 98.00
複製代碼
Histogram須要統計數據分佈,其內部必須抽樣維護數據信息。內置的數據抽樣有如下幾種實現:
若使用ExponentiallyDecayingReservoir和SlidingTimeWindowReservoir,須要注意容量,底層並不會限制容量大小。若服務流量大,可能會佔用不少內存。
Timer是Histogram和Meter的結合,Histogram統計耗時分佈,Meter統計QPS;
public class TimerTest {
public static Random random = new Random();
private static void request() throws InterruptedException {
Thread.sleep(random.nextInt(1000));
}
public static void main(String[] args) throws Exception {
MetricRegistry registry = new MetricRegistry();
ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
reporter.start(1, TimeUnit.SECONDS);
Timer timer = registry.timer("request.latency");
Timer.Context ctx;
while (true) {
ctx = timer.time();
request();
ctx.stop();
}
}
}
複製代碼
代碼運行結果以下:
-- Timers ----------------------------------------------------------------------
request.latency
count = 22
mean rate = 2.00 calls/second
1-minute rate = 1.98 calls/second
5-minute rate = 2.00 calls/second
15-minute rate = 2.00 calls/second
min = 148.93 milliseconds
max = 865.65 milliseconds
mean = 491.89 milliseconds
stddev = 219.59 milliseconds
median = 465.60 milliseconds
75% <= 671.65 milliseconds
95% <= 850.28 milliseconds
98% <= 865.65 milliseconds
99% <= 865.65 milliseconds
99.9% <= 865.65 milliseconds
複製代碼
當咱們須要上報服務瞬時指標時會使用Guage,如Jvm的使用狀況。當咱們須要統計數據分佈時會使用Histogram,如接口的響應耗時分佈。當咱們須要統計頻率時會使用Meter,如某個接口的請求頻率。當咱們既須要統計頻率也須要統計分佈時會使用Timer對象,如某個接口的請求頻率及耗時狀況。