二叉排序樹(Binary Sort Tree),又稱二叉查找樹(Binary Search Tree),也稱二叉搜索樹。node
定義:數組
添加刪除查找節點方法實現:優化
#include <stdio.h> #include <stdlib.h> #define SIZE 10 typedef struct tagNode{ int value; struct tagNode* left; struct tagNode* right; }treeNode; //打印數組 void displayArray(int array[],int size){ printf("the array is:"); int i; for(i=0;i<size;i++){ printf("%d ",array[i]); } printf("\n"); } //按左中右順序遍歷樹 void displayTree(treeNode* node){ if(node == NULL) return; if(node->left != NULL){ displayTree(node->left); } printf("%d ",node->value); if(node->right != NULL){ displayTree(node->right); } } //查找以node爲節點的樹中上是否存在vlaue的節點 treeNode* searchTree(treeNode* node, int value){ if(node->value == value){ return node; }else if(node->value > value){ if(node->left != NULL){ return searchTree(node->left, value); }else{ return NULL; } }else{ if(node->right != NULL){ return searchTree(node->right, value); }else{ return NULL; } } } //查找以node爲節點的樹中上是否存在vlaue的節點,parent爲查找到的節點的父節點。 //dir爲1表示parent節點的左節點爲查找結果 //dir爲2表示parent節點的右節點爲查找結果 treeNode* searchTreeWithParent(treeNode* node, treeNode** parent, int* dir, int value){ if(node->value == value){ return node; }else if(node->value > value){ if(node->left != NULL){ *dir = 1; *parent = node; return searchTreeWithParent(node->left, parent, dir, value); }else{ return NULL; } }else{ if(node->right != NULL){ *dir = 2; *parent = node; return searchTreeWithParent(node->right, parent, dir, value); }else{ return NULL; } } } //將iNode插入到以node爲根節點的樹中 void insertNode(treeNode* node, treeNode* iNode){ if(iNode->value >= node->value && node->right != NULL){ insertNode(node->right, iNode); return; } if(iNode->value < node->value && node->left != NULL){ insertNode(node->left, iNode); return; } if(iNode->value >= node->value && node->right == NULL){ node->right = iNode; } if(iNode->value < node->value && node->left == NULL){ node->left = iNode; } } //從以root爲根節點的樹中刪除值爲value的節點 void deleteNode(treeNode** root, int value){ treeNode* parent = NULL; int dir = -1; treeNode* deleteNode = searchTreeWithParent(*root,&parent,&dir,value); if(deleteNode == NULL){ printf("%s\n", "node not found"); }else{ if(deleteNode->left == NULL && deleteNode->right == NULL){ //對應說明中的a if(parent != NULL){ if(dir == 1) parent->left = NULL; else parent->right = NULL; }else{//對應說明中的b *root = NULL; } }else if(deleteNode->left != NULL && deleteNode->right == NULL){ //對應說明中的c if(parent != NULL){ if(dir == 1) parent->left = deleteNode->left; else parent->right = deleteNode->left; }else{//對應說明中的d *root = deleteNode->left; } }else if(deleteNode->left == NULL && deleteNode->right != NULL){ //對應說明中的e if(parent != NULL){ if(dir == 1) parent->left = deleteNode->right; else parent->right = deleteNode->right; }else{//對應說明中的f *root = deleteNode->right; } }else{ insertNode(deleteNode->left,deleteNode->right); //對應說明中的g if(parent != NULL){ if(dir == 1) parent->left = deleteNode->left; else parent->right = deleteNode->left; }else{//對應說明中的h *root = deleteNode->left; } } free(deleteNode); deleteNode = NULL; } } //使用array數組中的數,建立以root爲根節點的樹, void createTree(treeNode** root, int array[], int size){ int i; *root = (treeNode*)malloc(sizeof(treeNode)); (*root)->value = array[0]; (*root)->left = NULL; (*root)->right = NULL; for(i=1;i<size;i++){ treeNode* child = (treeNode*)malloc(sizeof(treeNode)); child->value = array[i]; child->left = NULL; child->right = NULL; insertNode(*root, child); } } //刪除以node爲根節點的樹 void deleteTree(treeNode* node){ if(node == NULL) return; if(node->left != NULL){ deleteTree(node->left); } if(node->right != NULL){ deleteTree(node->right); } if(node->left == NULL && node->right == NULL){ free(node); node = NULL; } } int main(int argc, char* argv[]){ int array[SIZE] = {4,1,45,78,345,23,12,3,6,21}; displayArray(array,SIZE); treeNode *root = NULL; createTree(&root, array, SIZE); printf("the tree is(left->middle->right):"); displayTree(root); printf("\n"); int value = atoi(argv[1]); treeNode* parent = NULL; int dir = -1; printf("search value %d:",value); if(searchTree(root,value) != NULL){ printf("%s\n","exist"); }else{ printf("%s\n","not exist"); } printf("delete value:%d ",value); deleteNode(&root,value); printf("\n"); printf("the tree is(left->middle->right):"); displayTree(root); printf("\n"); deleteTree(root); return 0; }
紅黑樹是對二叉排序樹的優化,在每次插入節點後根據黑樹樹的特定規則調整樹的結構,使樹儘可能的平衡。code
紅黑樹規則:排序
這些約束強制了紅黑樹的關鍵性質:從根到葉子的最長的可能路徑很少餘最短可能路徑的兩倍長。結果是這個樹大體上是平衡的。由於操做好比插入、刪除和查找某個值的最壞狀況時間都要求與樹的高度成比例,這個在高度上的理論上限容許紅黑樹在最壞狀況下都是高效的,而不一樣於普通的二叉查找樹。get
要知道爲何這些特性確保了這個結果,注意到性質4致使了路徑不能有兩個毗連的紅色節點就足夠了。最短的可能路徑都是黑色節點,最長的可能路徑有交替的紅色和黑色節點。由於根據性質5全部最長的路徑都有相同數目的黑色節點,這就代表了沒有路徑能多於任何其餘路徑的兩倍長。it