hive窗口函數/分析函數詳細剖析

hive窗口函數/分析函數

在sql中有一類函數叫作聚合函數,例如sum()、avg()、max()等等,這類函數能夠將多行數據按照規則彙集爲一行,通常來說彙集後的行數是要少於彙集前的行數的。可是有時咱們想要既顯示彙集前的數據,又要顯示彙集後的數據,這時咱們便引入了窗口函數。窗口函數又叫OLAP函數/分析函數,窗口函數兼具分組和排序功能。sql

窗口函數最重要的關鍵字是 partition byorder by。cookie

具體語法以下:over (partition by xxx order by xxx)函數

sum,avg,min,max 函數

準備數據學習

建表語句:
create table bigdata_t1(
cookieid string,
createtime string,   --day 
pv int
) row format delimited 
fields terminated by ',';

加載數據:
load data local inpath '/root/hivedata/bigdata_t1.dat' into table bigdata_t1;

cookie1,2018-04-10,1
cookie1,2018-04-11,5
cookie1,2018-04-12,7
cookie1,2018-04-13,3
cookie1,2018-04-14,2
cookie1,2018-04-15,4
cookie1,2018-04-16,4

開啓智能本地模式
SET hive.exec.mode.local.auto=true;

SUM函數和窗口函數的配合使用:結果和ORDER BY相關,默認爲升序。大數據

#pv1
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime) as pv1 
from bigdata_t1;

#pv2
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between unbounded preceding and current row) as pv2
from bigdata_t1;

#pv3
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid) as pv3
from bigdata_t1;

#pv4
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and current row) as pv4
from bigdata_t1;

#pv5
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5
from bigdata_t1;

#pv6
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between current row and unbounded following) as pv6
from bigdata_t1;


pv1: 分組內從起點到當前行的pv累積,如,11號的pv1=10號的pv+11號的pv, 12號=10號+11號+12號
pv2: 同pv1
pv3: 分組內(cookie1)全部的pv累加
pv4: 分組內當前行+往前3行,如,11號=10號+11號, 12號=10號+11號+12號,
	                       13號=10號+11號+12號+13號, 14號=11號+12號+13號+14號
pv5: 分組內當前行+往前3行+日後1行,如,14號=11號+12號+13號+14號+15號=5+7+3+2+4=21
pv6: 分組內當前行+日後全部行,如,13號=13號+14號+15號+16號=3+2+4+4=13,
							 14號=14號+15號+16號=2+4+4=10

若是不指定rows between,默認爲從起點到當前行;url

若是不指定order by,則將分組內全部值累加;code

關鍵是理解rows between含義,也叫作window子句orm

preceding:往前排序

following:日後string

current row:當前行

unbounded:起點

unbounded preceding 表示從前面的起點

unbounded following:表示到後面的終點

AVG,MIN,MAX,和SUM用法同樣。

row_number,rank,dense_rank,ntile 函數

準備數據

cookie1,2018-04-10,1
cookie1,2018-04-11,5
cookie1,2018-04-12,7
cookie1,2018-04-13,3
cookie1,2018-04-14,2
cookie1,2018-04-15,4
cookie1,2018-04-16,4
cookie2,2018-04-10,2
cookie2,2018-04-11,3
cookie2,2018-04-12,5
cookie2,2018-04-13,6
cookie2,2018-04-14,3
cookie2,2018-04-15,9
cookie2,2018-04-16,7
 
CREATE TABLE bigdata_t2 (
cookieid string,
createtime string,   --day 
pv INT
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile;
  
加載數據:
load data local inpath '/root/hivedata/bigdata_t2.dat' into table bigdata_t2;
  • ROW_NUMBER()使用

    ROW_NUMBER()從1開始,按照順序,生成分組內記錄的序列。

SELECT 
cookieid,
createtime,
pv,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn 
FROM bigdata_t2;
  • RANK 和 DENSE_RANK使用

    RANK() 生成數據項在分組中的排名,排名相等會在名次中留下空位 。

    DENSE_RANK()生成數據項在分組中的排名,排名相等會在名次中不會留下空位。

SELECT 
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
FROM bigdata_t2 
WHERE cookieid = 'cookie1';
  • NTILE

    有時會有這樣的需求:若是數據排序後分爲三部分,業務人員只關心其中的一部分,如何將這中間的三分之一數據拿出來呢?NTILE函數便可以知足。

    ntile能夠當作是:把有序的數據集合平均分配到指定的數量(num)個桶中, 將桶號分配給每一行。若是不能平均分配,則優先分配較小編號的桶,而且各個桶中能放的行數最多相差1。

    而後能夠根據桶號,選取前或後 n分之幾的數據。數據會完整展現出來,只是給相應的數據打標籤;具體要取幾分之幾的數據,須要再嵌套一層根據標籤取出。

SELECT 
cookieid,
createtime,
pv,
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1,
NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2,
NTILE(4) OVER(ORDER BY createtime) AS rn3
FROM bigdata_t2 
ORDER BY cookieid,createtime;

其餘一些窗口函數

lag,lead,first_value,last_value 函數

  • LAG
    LAG(col,n,DEFAULT) 用於統計窗口內往上第n行值第一個參數爲列名,第二個參數爲往上第n行(可選,默認爲1),第三個參數爲默認值(當往上第n行爲NULL時候,取默認值,如不指定,則爲NULL)
SELECT cookieid,
  createtime,
  url,
  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
  LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
  LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time 
  FROM bigdata_t4;
  
  
  last_1_time: 指定了往上第1行的值,default爲'1970-01-01 00:00:00'  
               			 cookie1第一行,往上1行爲NULL,所以取默認值 1970-01-01 00:00:00
               			 cookie1第三行,往上1行值爲第二行值,2015-04-10 10:00:02
               			 cookie1第六行,往上1行值爲第五行值,2015-04-10 10:50:01
  last_2_time: 指定了往上第2行的值,爲指定默認值
  						 cookie1第一行,往上2行爲NULL
  						 cookie1第二行,往上2行爲NULL
  						 cookie1第四行,往上2行爲第二行值,2015-04-10 10:00:02
  						 cookie1第七行,往上2行爲第五行值,2015-04-10 10:50:01
  • LEAD

    與LAG相反
    LEAD(col,n,DEFAULT) 用於統計窗口內往下第n行值
    第一個參數爲列名,第二個參數爲往下第n行(可選,默認爲1),第三個參數爲默認值(當往下第n行爲NULL時候,取默認值,如不指定,則爲NULL)

SELECT cookieid,
  createtime,
  url,
  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
  LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
  LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time 
  FROM bigdata_t4;
  • FIRST_VALUE

    取分組內排序後,截止到當前行,第一個值

SELECT cookieid,
  createtime,
  url,
  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
  FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1 
  FROM bigdata_t4;
  • LAST_VALUE

    取分組內排序後,截止到當前行,最後一個值

SELECT cookieid,
  createtime,
  url,
  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
  LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1 
  FROM bigdata_t4;

若是想要取分組內排序後最後一個值,則須要變通一下:

SELECT cookieid,
  createtime,
  url,
  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
  LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
  FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2 
  FROM bigdata_t4 
  ORDER BY cookieid,createtime;

特別注意order by

若是不指定ORDER BY,則進行排序混亂,會出現錯誤的結果

SELECT cookieid,
  createtime,
  url,
  FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2  
  FROM bigdata_t4;

cume_dist,percent_rank 函數

這兩個序列分析函數不是很經常使用,注意: 序列函數不支持WINDOW子句

  • 數據準備
d1,user1,1000
  d1,user2,2000
  d1,user3,3000
  d2,user4,4000
  d2,user5,5000
   
  CREATE EXTERNAL TABLE bigdata_t3 (
  dept STRING,
  userid string,
  sal INT
  ) ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY ',' 
  stored as textfile;
  
  加載數據:
  load data local inpath '/root/hivedata/bigdata_t3.dat' into table bigdata_t3;
  • CUME_DIST 和order by的排序順序有關係

    CUME_DIST 小於等於當前值的行數/分組內總行數 order 默認順序 正序 升序
    好比,統計小於等於當前薪水的人數,所佔總人數的比例

SELECT 
  dept,
  userid,
  sal,
  CUME_DIST() OVER(ORDER BY sal) AS rn1,
  CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2 
  FROM bigdata_t3;
  
  rn1: 沒有partition,全部數據均爲1組,總行數爲5,
       第一行:小於等於1000的行數爲1,所以,1/5=0.2
       第三行:小於等於3000的行數爲3,所以,3/5=0.6
  rn2: 按照部門分組,dpet=d1的行數爲3,
       第二行:小於等於2000的行數爲2,所以,2/3=0.6666666666666666
  • PERCENT_RANK

    PERCENT_RANK 分組內當前行的RANK值-1/分組內總行數-1

SELECT 
  dept,
  userid,
  sal,
  PERCENT_RANK() OVER(ORDER BY sal) AS rn1,   --分組內
  RANK() OVER(ORDER BY sal) AS rn11,          --分組內RANK值
  SUM(1) OVER(PARTITION BY NULL) AS rn12,     --分組內總行數
  PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2 
  FROM bigdata_t3;
  
  rn1: rn1 = (rn11-1) / (rn12-1) 
  	   第一行,(1-1)/(5-1)=0/4=0
  	   第二行,(2-1)/(5-1)=1/4=0.25
  	   第四行,(4-1)/(5-1)=3/4=0.75
  rn2: 按照dept分組,
       dept=d1的總行數爲3
       第一行,(1-1)/(3-1)=0
       第三行,(3-1)/(3-1)=1

grouping sets,grouping__id,cube,rollup 函數

這幾個分析函數一般用於OLAP中,不能累加,並且須要根據不一樣維度上鑽和下鑽的指標統計,好比,分小時、天、月的UV數。

  • 數據準備
2018-03,2018-03-10,cookie1
  2018-03,2018-03-10,cookie5
  2018-03,2018-03-12,cookie7
  2018-04,2018-04-12,cookie3
  2018-04,2018-04-13,cookie2
  2018-04,2018-04-13,cookie4
  2018-04,2018-04-16,cookie4
  2018-03,2018-03-10,cookie2
  2018-03,2018-03-10,cookie3
  2018-04,2018-04-12,cookie5
  2018-04,2018-04-13,cookie6
  2018-04,2018-04-15,cookie3
  2018-04,2018-04-15,cookie2
  2018-04,2018-04-16,cookie1
   
  CREATE TABLE bigdata_t5 (
  month STRING,
  day STRING, 
  cookieid STRING 
  ) ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY ',' 
  stored as textfile;
  
  加載數據:
  load data local inpath '/root/hivedata/bigdata_t5.dat' into table bigdata_t5;
  • GROUPING SETS

    grouping sets是一種將多個group by 邏輯寫在一個sql語句中的便利寫法。

    等價於將不一樣維度的GROUP BY結果集進行UNION ALL。

    GROUPING__ID,表示結果屬於哪個分組集合。

SELECT 
  month,
  day,
  COUNT(DISTINCT cookieid) AS uv,
  GROUPING__ID 
  FROM bigdata_t5 
  GROUP BY month,day 
  GROUPING SETS (month,day) 
  ORDER BY GROUPING__ID;
  
  grouping_id表示這一組結果屬於哪一個分組集合,
  根據grouping sets中的分組條件month,day,1是表明month,2是表明day
  
  等價於 
  SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month UNION ALL 
  SELECT NULL as month,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day;

再如:

SELECT 
  month,
  day,
  COUNT(DISTINCT cookieid) AS uv,
  GROUPING__ID 
  FROM bigdata_t5 
  GROUP BY month,day 
  GROUPING SETS (month,day,(month,day)) 
  ORDER BY GROUPING__ID;
  
  等價於
  SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month 
  UNION ALL 
  SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day
  UNION ALL 
  SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM bigdata_t5 GROUP BY month,day;
  • CUBE

    根據GROUP BY的維度的全部組合進行聚合。

SELECT 
  month,
  day,
  COUNT(DISTINCT cookieid) AS uv,
  GROUPING__ID 
  FROM bigdata_t5 
  GROUP BY month,day 
  WITH CUBE 
  ORDER BY GROUPING__ID;
  
  等價於
  SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM bigdata_t5
  UNION ALL 
  SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month 
  UNION ALL 
  SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day
  UNION ALL 
  SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM bigdata_t5 GROUP BY month,day;
  • ROLLUP

    是CUBE的子集,以最左側的維度爲主,從該維度進行層級聚合。

好比,以month維度進行層級聚合:
  SELECT 
  month,
  day,
  COUNT(DISTINCT cookieid) AS uv,
  GROUPING__ID  
  FROM bigdata_t5 
  GROUP BY month,day
  WITH ROLLUP 
  ORDER BY GROUPING__ID;
  
  --把month和day調換順序,則以day維度進行層級聚合:
   
  SELECT 
  day,
  month,
  COUNT(DISTINCT cookieid) AS uv,
  GROUPING__ID  
  FROM bigdata_t5 
  GROUP BY day,month 
  WITH ROLLUP 
  ORDER BY GROUPING__ID;
  (這裏,根據天和月進行聚合,和根據天聚合結果同樣,由於有父子關係,若是是其餘維度組合的話,就會不同)

搜索公衆號:五分鐘學大數據,獲取大數據學習祕籍,大數據能力將實現質的飛躍

相關文章
相關標籤/搜索