上一篇文章咱們介紹了JDK中ArrayList的實現,ArrayList底層結構是一個Object[]數組,經過拷貝,複製等一系列封裝的操做,將數組封裝爲一個幾乎是無限的容器。今天咱們來介紹JDK中List接口的另一種實現,基於鏈表結構的LinkedList。ArrayList因爲基於數組,因此在隨機訪問方面優點比較明顯,在刪除、插入方面性能會相對偏弱些(固然與刪除、插入的位置有很大關係)。那麼LinkedList有哪些優點呢?它在刪除、插入方面的操做很簡單(只是調整相關指針而已)。可是隨機訪問方面要遜色寫。下面咱們仍是從源碼上來看下這種鏈表結構的List。node
transient int size = 0;
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;
複製代碼
咱們看到字段很是少,size表示當前節點數量,first指向鏈表的起始元素、last指向鏈表的最後一個元素。數組
從上面主要字段看出,LinkedList鏈表的Item就是一個Node結構,那麼Node結構是怎樣的呢?源碼以下:bash
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
複製代碼
咱們看到Node結構包含一個前驅prev指針,item(value)、後繼next指針三個部分。結合上面的描述,咱們知道了LinkedList的主要結構。如圖:數據結構
/**
* Constructs an empty list.
*/
public LinkedList() {
}
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's'
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
複製代碼
因爲LinkedList是經過prev與next指針連接起來的,有元素添加時只須要一個個設置指針將其連接起來便可,因此構造函數相對較簡潔。咱們重點來看下第二個構造函數中的addAll方法。app
/**
* Appends all of the elements in the specified collection to the end of
* this list, in the order that they are returned by the specified
* collection's iterator. The behavior of this operation is undefined if * the specified collection is modified while the operation is in * progress. (Note that this will occur if the specified collection is * this list, and it's nonempty.)
*
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
/**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in the list in the order that they are returned by the
* specified collection's iterator.'
*
* @param index index at which to insert the first element
* from the specified collection
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
複製代碼
addAll方法是將Collection集合插入鏈表。下面咱們來仔細分析整個過程(涉及比較多的指針操做)。函數
removeFirst方法會返回當前鏈表的頭部節點值,而後將頭結點指向下一個節點,咱們經過源碼來分析:性能
/**
* Removes and returns the first element from this list.
*
* @return the first element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
/**
* Unlinks non-null first node f.
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
複製代碼
咱們看到主要邏輯在unlinkFirst方法中,邏輯仍是比較清晰的,first指針指向next節點,該節點做爲新的鏈表頭部,只是最後須要處理下邊界值(next==null)的狀況。removeLast方法相似,你們能夠去分析源碼。ui
addFirst方法是將新節點插入鏈表,而且將新節點做爲鏈表頭部,下面咱們來看源碼:this
/**
* Inserts the specified element at the beginning of this list.
*
* @param e the element to add
*/
public void addFirst(E e) {
linkFirst(e);
}
/**
* Links e as first element.
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
複製代碼
代碼邏輯比較清晰,newNode節點在建立時,因爲是做爲新的頭結點的,因此prev必須是NULL的,next是指向當前頭結點f。接下來就是設置first,處理邊界值了。
下面咱們來看下addLast方法,源碼以下:spa
/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
*/
public void addLast(E e) {
linkLast(e);
}
/**
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
複製代碼
這兩個方法是咱們使用頻率很高的方法,咱們來看下其內部實現:
/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
linkLast(e);
return true;
}
/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If this list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* {@code i} such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>
* (if such an element exists). Returns {@code true} if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*
* @param o element to be removed from this list, if present
* @return {@code true} if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
/**
* Unlinks non-null node x.
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
複製代碼
咱們看到add方法其實就是對linkLast方法的封裝(固然,這是末尾添加)。remove方法邏輯會複雜些,須要先找到指定節點,而後調用unlink方法。
unlink方法解析
咱們看到unlink方法首先將須要刪除的節點的prev和next保存起來,由於後面須要將二者鏈接起來。而後將prev和next分別判斷設置(包括邊界值的考慮),最後將x節點的數據設置爲NULL。
LinkedList鏈表結構的,它的clear方法是如何實現的呢?咱們來看下:
/**
* Removes all of the elements from this list.
* The list will be empty after this call returns.
*/
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
複製代碼
代碼仍是比較清晰的,就是從頭結點開始,將Node節點一個個的設置爲NULL,方便GC回收。
有數據結構基礎的同窗應該都知道隊列的結構,這是一種先進先出的結構。從JDK1.5開始,LinkedList內部集成了隊列的操做,LinkedList能夠當作一個基本的隊列進行使用。下面咱們從隊列的角度來看下LinkedList提供的相關方法。
/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E element() {
return getFirst();
}
/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E remove() {
return removeFirst();
}
複製代碼
從上面的方法,咱們知道peek、element方法只返回隊列頭部數據,不移除頭部。而poll、remove方法返回隊列頭部數據的同是,還會移除頭部。
/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}
複製代碼
從上面的代碼中咱們看到,offer方法其實就是入隊操做。
上面咱們介紹了使用LinkedList來做爲隊列的相關方法,在JDK6中添加相關方法讓LinkedList支持雙端隊列。源代碼以下:
// Deque operations
/**
* Inserts the specified element at the front of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
/**
* Inserts the specified element at the end of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerLast})
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}
/**
* Retrieves, but does not remove, the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* Retrieves, but does not remove, the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
/**
* Retrieves and removes the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* Retrieves and removes the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
複製代碼
上面的代碼邏輯比較清楚,就不詳細介紹了。
堆棧大夥確定很熟悉,是一種先進後出的結構。相似於疊盤子,通常咱們使用的時候確定從最上面拿取。棧也是這樣,最後進入的,最早出去。LinkedList在JDK6的時候也添加了對棧的支持。咱們來看相關源碼:
/**
* Pushes an element onto the stack represented by this list. In other
* words, inserts the element at the front of this list.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @since 1.6
*/
public void push(E e) {
addFirst(e);
}
/**
* Pops an element from the stack represented by this list. In other
* words, removes and returns the first element of this list.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this list (which is the top
* of the stack represented by this list)
* @throws NoSuchElementException if this list is empty
* @since 1.6
*/
public E pop() {
return removeFirst();
}
複製代碼
咱們看到LinkedList封裝的push和pop操做其實就是對first頭結點的操做。經過對頭結點不短了的push、pop來模擬堆棧先進後出的結構。
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();
lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex - 1;
}
public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();
Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}
public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
複製代碼
從上面的迭代器的源碼咱們能夠知道如下幾點:
對於集合來講,遍歷是很是常規的操做。可是對於LinkedList來講,遍歷的時候須要選擇合適的方法,由於不合理的方法對於性能有很是大的差異。咱們經過例子來看:
List<String> list=new LinkedList<>();
for(int i=0;i<10000;i++) {
list.add(String.valueOf(i));
}
//遍歷方法一
long time=System.currentTimeMillis();
for(int i=0;i<list.size();i++) {
list.get(i);
}
System.out.println(System.currentTimeMillis()-time);
time=System.currentTimeMillis();
Iterator<String> iterator=list.iterator();
while (iterator.hasNext()) {
iterator.next();
}
iterator.remove();
System.out.println(System.currentTimeMillis()-time);
複製代碼
輸出以下:
size:10000的狀況
120
2
size:100000的狀況
28949
2
複製代碼
一樣是遍歷方法,爲何性能差異幾十倍,設置上萬倍呢?研究過源碼的同窗應該能發現其中的奧祕。咱們來看get方法的邏輯:
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
複製代碼
咱們看到,咱們get(index)的時候,都須要從頭,或者從尾部慢慢循環過來。get(4000)的時候須要從0-4000進行遍歷。get(4001)的時候仍是須要從0-4001進行遍歷。作了無數的無用功。可是迭代器就不同了。迭代器經過next指針,能指向下一個節點,無需作額外的遍歷,速度很是快。