『 Spark 』1. spark 簡介

原文連接:『 Spark 』1. spark 簡介git

寫在前面

本系列是綜合了本身在學習spark過程當中的理解記錄 + 對參考文章中的一些理解 + 我的實踐spark過程當中的一些心得而來。寫這樣一個系列僅僅是爲了梳理我的學習spark的筆記記錄,並不是爲了作什麼教程,因此一切以我的理解梳理爲主,沒有必要的細節就不會記錄了。若想深刻了解,最好閱讀參考文章和官方文檔。github

其次,本系列是基於目前最新的 spark 1.6.0 系列開始的,spark 目前的更新速度很快,記錄一下版本好仍是必要的。
最後,若是各位以爲內容有誤,歡迎留言備註,全部留言 24 小時內一定回覆,很是感謝。
Tips: 若是插圖看起來不明顯,能夠:1. 放大網頁;2. 新標籤中打開圖片,查看原圖哦。sql

1. 如何向別人介紹 spark

Apache Spark™ is a fast and general engine for large-scale data processing.編程

Apache Spark is a fast and general-purpose cluster computing system.
It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including :app

  • Spark SQL for SQL and structured data processing, extends to DataFrames and DataSets
  • MLlib for machine learning
  • GraphX for graph processing
  • Spark Streaming for stream data processing

2. spark 誕生的一些背景

introduction-to-spark-1.jpg introduction-to-spark-2.jpg

Spark started in 2009, open sourced 2010, unlike the various specialized systems[hadoop, storm], Spark’s goal was to :ide

  • generalize MapReduce to support new apps within same engineoop

    • it's perfectly compatible with hadoop, can run on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, and S3.
  • speed up iteration computing over hadoop.學習

    • use memory + disk instead of disk as data storage medium
    • design a new programming modal, RDD, which make the data processing more graceful [RDD transformation, action, distributed jobs, stages and tasks]

introduction-to-spark-4.jpg introduction-to-spark-5.jpg

3. 爲什麼選用 spark

  • designed, implemented and used as libs, instead of specialized systems;
    • much more useful and maintainable

introduction-to-spark-3.jpg

  • from history, it is designed and improved upon hadoop and storm, it has perfect genes;
  • documents, community, products and trends;
  • it provides sql, dataframes, datasets, machine learning lib, graph computing lib and activitily growth 3-party lib, easy to use, cover lots of use cases in lots field;
  • it provides ad-hoc exploring, which boost your data exploring and pre-processing and help you build your data ETL, processing job;

4. Next

下一篇,簡單介紹 spark 裏必須深入理解的基本概念。大數據

參考文章

本系列文章連接

相關文章
相關標籤/搜索