圖像處理之三種常見雙立方插值算法算法
雙立方插值計算涉及到16個像素點,其中(i’, j’)表示待計算像素點在源圖像中的包含ide
小數部分的像素座標,dx表示X方向的小數座標,dy表示Y方向的小數座標。具體函數
能夠看下圖:this
![](http://static.javashuo.com/static/loading.gif)
根據上述圖示與雙立方插值的數學表達式能夠看出,雙立方插值本質上圖像16個像素點spa
權重卷積之和做爲新的像素值。.net
其中R(x)表示插值表達式,能夠根據須要選擇的表達式不一樣。常見有基於三角取值、Bellblog
分佈表達、B樣條曲線表達式。圖片
1. 基於三角形採樣數學公式爲ip
![](http://static.javashuo.com/static/loading.gif)
最簡單的線性分佈,代碼實現以下:
- private double triangleInterpolation( double f )
- {
- f = f / 2.0;
- if( f < 0.0 )
- {
- return ( f + 1.0 );
- }
- else
- {
- return ( 1.0 - f );
- }
- }
2.基於Bell分佈採樣的數學公式以下:
![](http://static.javashuo.com/static/loading.gif)
Bell分佈採樣數學公式基於三次卷積計算實現。代碼實現以下:
- private double bellInterpolation( double x )
- {
- double f = ( x / 2.0 ) * 1.5;
- if( f > -1.5 && f < -0.5 )
- {
- return( 0.5 * Math.pow(f + 1.5, 2.0));
- }
- else if( f > -0.5 && f < 0.5 )
- {
- return 3.0 / 4.0 - ( f * f );
- }
- else if( ( f > 0.5 && f < 1.5 ) )
- {
- return( 0.5 * Math.pow(f - 1.5, 2.0));
- }
- return 0.0;
- }
3.基於B樣條曲線採樣的數學公式以下:
![](http://static.javashuo.com/static/loading.gif)
是一種基於多項式的四次卷積的採樣計算,代碼以下:
- private double bspLineInterpolation( double f )
- {
- if( f < 0.0 )
- {
- f = -f;
- }
-
- if( f >= 0.0 && f <= 1.0 )
- {
- return ( 2.0 / 3.0 ) + ( 0.5 ) * ( f* f * f ) - (f*f);
- }
- else if( f > 1.0 && f <= 2.0 )
- {
- return 1.0 / 6.0 * Math.pow( ( 2.0 - f ), 3.0 );
- }
- return 1.0;
- }
實現圖像雙立方插值的完整源代碼以下:
- package com.gloomyfish.zoom.study;
-
- import java.awt.image.BufferedImage;
- import java.awt.image.ColorModel;
-
- import com.gloomyfish.filter.study.AbstractBufferedImageOp;
-
- public class BicubicInterpolationFilter extends AbstractBufferedImageOp {
- public final static int TRIANGLE__INTERPOLATION = 1;
- public final static int BELL__INTERPOLATION = 2;
- public final static int BSPLINE__INTERPOLATION = 4;
- public final static int CATMULLROOM__INTERPOLATION = 8;
- public final static double B = 0.0;
- public final static double C = 0.5;
- private int destH;
- private int destW;
- private int type;
- public BicubicInterpolationFilter()
- {
- this.type = BSPLINE__INTERPOLATION;
- }
- public void setType(int type) {
- this.type = type;
- }
- public void setDestHeight(int destH) {
- this.destH = destH;
- }
-
- public void setDestWidth(int destW) {
- this.destW = destW;
- }
-
- private double bellInterpolation( double x )
- {
- double f = ( x / 2.0 ) * 1.5;
- if( f > -1.5 && f < -0.5 )
- {
- return( 0.5 * Math.pow(f + 1.5, 2.0));
- }
- else if( f > -0.5 && f < 0.5 )
- {
- return 3.0 / 4.0 - ( f * f );
- }
- else if( ( f > 0.5 && f < 1.5 ) )
- {
- return( 0.5 * Math.pow(f - 1.5, 2.0));
- }
- return 0.0;
- }
-
- private double bspLineInterpolation( double f )
- {
- if( f < 0.0 )
- {
- f = -f;
- }
-
- if( f >= 0.0 && f <= 1.0 )
- {
- return ( 2.0 / 3.0 ) + ( 0.5 ) * ( f* f * f ) - (f*f);
- }
- else if( f > 1.0 && f <= 2.0 )
- {
- return 1.0 / 6.0 * Math.pow( ( 2.0 - f ), 3.0 );
- }
- return 1.0;
- }
-
- private double triangleInterpolation( double f )
- {
- f = f / 2.0;
- if( f < 0.0 )
- {
- return ( f + 1.0 );
- }
- else
- {
- return ( 1.0 - f );
- }
- }
-
- private double CatMullRomInterpolation( double f )
- {
- if( f < 0.0 )
- {
- f = Math.abs(f);
- }
- if( f < 1.0 )
- {
- return ( ( 12 - 9 * B - 6 * C ) * ( f * f * f ) +
- ( -18 + 12 * B + 6 *C ) * ( f * f ) +
- ( 6 - 2 * B ) ) / 6.0;
- }
- else if( f >= 1.0 && f < 2.0 )
- {
- return ( ( -B - 6 * C ) * ( f * f * f )
- + ( 6 * B + 30 * C ) * ( f *f ) +
- ( - ( 12 * B ) - 48 * C ) * f +
- 8 * B + 24 * C)/ 6.0;
- }
- else
- {
- return 0.0;
- }
- }
-
- @Override
- public BufferedImage filter(BufferedImage src, BufferedImage dest) {
- int width = src.getWidth();
- int height = src.getHeight();
-
- if (dest == null)
- dest = createCompatibleDestImage(src, null);
-
- int[] inPixels = new int[width * height];
- int[] outPixels = new int[destH * destW];
- getRGB(src, 0, 0, width, height, inPixels);
- float rowRatio = ((float) height) / ((float) destH);
- float colRatio = ((float) width) / ((float) destW);
- int index = 0;
- for (int row = 0; row < destH; row++) {
- int ta = 0, tr = 0, tg = 0, tb = 0;
- double srcRow = ((float) row) * rowRatio;
-
- double j = Math.floor(srcRow);
-
- double t = srcRow - j;
- for (int col = 0; col < destW; col++) {
- double srcCol = ((float) col) * colRatio;
-
- double k = Math.floor(srcCol);
-
- double u = srcCol - k;
- double[] rgbData = new double[3];
- double rgbCoffeData = 0.0;
- for(int m=-1; m<3; m++)
- {
- for(int n=-1; n<3; n++)
- {
- int[] rgb = getPixel(j+m, k+n, width, height, inPixels);
- double f1 = 0.0d;
- double f2 = 0.0d;
- if(type == TRIANGLE__INTERPOLATION)
- {
- f1 = triangleInterpolation( ((double) m ) - t );
- f2 = triangleInterpolation ( -(( (double) n ) - u ) );
- }
- else if(type == BELL__INTERPOLATION)
- {
- f1 = bellInterpolation( ((double) m ) - t );
- f2 = bellInterpolation ( -(( (double) n ) - u ) );
- }
- else if(type == BSPLINE__INTERPOLATION)
- {
- f1 = bspLineInterpolation( ((double) m ) - t );
- f2 = bspLineInterpolation ( -(( (double) n ) - u ) );
- }
- else
- {
- f1 = CatMullRomInterpolation( ((double) m ) - t );
- f2 = CatMullRomInterpolation ( -(( (double) n ) - u ) );
- }
-
- rgbCoffeData += f2*f1;
-
- rgbData[0] += rgb[0] * f2 * f1;
- rgbData[1] += rgb[1] * f2 * f1;
- rgbData[2] += rgb[2] * f2 * f1;
- }
- }
- ta = 255;
-
- tr = (int) (rgbData[0]/rgbCoffeData);
- tg = (int) (rgbData[1]/rgbCoffeData);
- tb = (int) (rgbData[2]/rgbCoffeData);
- index = row * destW + col;
- outPixels[index] = (ta << 24) | (clamp(tr) << 16)
- | (clamp(tg) << 8) | clamp(tb);
- }
- }
- setRGB(dest, 0, 0, destW, destH, outPixels);
- return dest;
- }
-
- public int clamp(int value) {
- return value > 255 ? 255 :
- (value < 0 ? 0 : value);
- }
-
- private int[] getPixel(double j, double k, int width, int height,
- int[] inPixels) {
- int row = (int) j;
- int col = (int) k;
- if (row >= height) {
- row = height - 1;
- }
- if (row < 0) {
- row = 0;
- }
- if (col < 0) {
- col = 0;
- }
- if (col >= width) {
- col = width - 1;
- }
- int index = row * width + col;
- int[] rgb = new int[3];
- rgb[0] = (inPixels[index] >> 16) & 0xff;
- rgb[1] = (inPixels[index] >> 8) & 0xff;
- rgb[2] = inPixels[index] & 0xff;
- return rgb;
- }
- public BufferedImage createCompatibleDestImage(
- BufferedImage src, ColorModel dstCM) {
- if ( dstCM == null )
- dstCM = src.getColorModel();
- return new BufferedImage(dstCM,
- dstCM.createCompatibleWritableRaster(destW, destH),
- dstCM.isAlphaPremultiplied(), null);
- }
- }
運行效果:原圖
![](http://static.javashuo.com/static/loading.gif)
雙立方插值放大之後:
![](http://static.javashuo.com/static/loading.gif)
總結:
基於這裏三種方法實現的雙立方插值之後圖片跟原圖像相比,都有必定模糊
這裏時候能夠經過後續處理實現圖像銳化與對比度提高便可獲得Sharpen版本
固然也能夠經過尋找更加合適的R(x)函數來實現雙立方卷積插值過程時保留
圖像邊緣與對比度。
轉載請務必註明