三種常見的圖像處理雙三次插值算法

三種常見的圖像處理雙三次插值算法java

雙立方插值計算涉及16像素,間(i’, j’)像中的包括算法

小數部分的像素座標。dx表示X方向的小數座標。dy表示Y方向的小數座標。ide

詳細函數

可以看下圖:this


依據上述圖示與雙立方插值的數學表達式可以看出。雙立方插值本質上圖像16個像素點spa

權重卷積之和做爲新的像素值。code

當中R(x)表示插值表達式,可以依據需要選擇的表達式不一樣。常見有基於三角取值、Bell圖片

分佈表達、B樣條曲線表達式。ip

1. 基於三角形採樣數學公式爲rem


最簡單的線性分佈,代碼實現例如如下:

private double triangleInterpolation( double f )
{
	f = f / 2.0;
	if( f < 0.0 )
	{
		return ( f + 1.0 );
	}
	else
	{
		return ( 1.0 - f );
	}
}
2.基於Bell分佈採樣的數學公式例如如下:


Bell分佈採樣數學公式基於三次卷積計算實現。代碼實現例如如下:

private double bellInterpolation( double x )
{
	double f = ( x / 2.0 ) * 1.5;
	if( f > -1.5 && f < -0.5 )
	{
		return( 0.5 * Math.pow(f + 1.5, 2.0));
	}
	else if( f > -0.5 && f < 0.5 )
	{
		return 3.0 / 4.0 - ( f * f );
	}
	else if( ( f > 0.5 && f < 1.5 ) )
	{
		return( 0.5 * Math.pow(f - 1.5, 2.0));
	}
	return 0.0;
}
3.基於B樣條曲線採樣的數學公式例如如下:


是一種基於多項式的四次卷積的採樣計算,代碼例如如下:

private double bspLineInterpolation( double f )
{
	if( f < 0.0 )
	{
		f = -f;
	}

	if( f >= 0.0 && f <= 1.0 )
	{
		return ( 2.0 / 3.0 ) + ( 0.5 ) * ( f* f * f ) - (f*f);
	}
	else if( f > 1.0 && f <= 2.0 )
	{
		return 1.0 / 6.0 * Math.pow( ( 2.0 - f  ), 3.0 );
	}
	return 1.0;
}
實現圖像雙立方插值的完整源碼例如如下:

package com.gloomyfish.zoom.study;

import java.awt.image.BufferedImage;
import java.awt.image.ColorModel;

import com.gloomyfish.filter.study.AbstractBufferedImageOp;

public class BicubicInterpolationFilter extends AbstractBufferedImageOp  {
	public final static int TRIANGLE__INTERPOLATION = 1;
	public final static int BELL__INTERPOLATION = 2;
	public final static int BSPLINE__INTERPOLATION = 4;
	public final static int CATMULLROOM__INTERPOLATION = 8;
    public final static double B = 0.0;
    public final static double C = 0.5; // constant
	private int destH; // zoom height
	private int destW; // zoom width
	private int type;
	public BicubicInterpolationFilter()
	{
		this.type = BSPLINE__INTERPOLATION;
	}
	public void setType(int type) {
		this.type = type;
	}
	public void setDestHeight(int destH) {
		this.destH = destH;
	}

	public void setDestWidth(int destW) {
		this.destW = destW;
	}
	
	private double bellInterpolation( double x )
	{
		double f = ( x / 2.0 ) * 1.5;
		if( f > -1.5 && f < -0.5 )
		{
			return( 0.5 * Math.pow(f + 1.5, 2.0));
		}
		else if( f > -0.5 && f < 0.5 )
		{
			return 3.0 / 4.0 - ( f * f );
		}
		else if( ( f > 0.5 && f < 1.5 ) )
		{
			return( 0.5 * Math.pow(f - 1.5, 2.0));
		}
		return 0.0;
	}
	
	private double bspLineInterpolation( double f )
	{
		if( f < 0.0 )
		{
			f = -f;
		}

		if( f >= 0.0 && f <= 1.0 )
		{
			return ( 2.0 / 3.0 ) + ( 0.5 ) * ( f* f * f ) - (f*f);
		}
		else if( f > 1.0 && f <= 2.0 )
		{
			return 1.0 / 6.0 * Math.pow( ( 2.0 - f  ), 3.0 );
		}
		return 1.0;
	}
	
	private double triangleInterpolation( double f )
	{
		f = f / 2.0;
		if( f < 0.0 )
		{
			return ( f + 1.0 );
		}
		else
		{
			return ( 1.0 - f );
		}
	}
	
	private double CatMullRomInterpolation( double f )
	{
	    if( f < 0.0 )
	    {
	        f = Math.abs(f);
	    }
	    if( f < 1.0 )
	    {
	        return ( ( 12 - 9 * B - 6 * C ) * ( f * f * f ) +
	            ( -18 + 12 * B + 6 *C ) * ( f * f ) +
	            ( 6 - 2 * B ) ) / 6.0;
	    }
	    else if( f >= 1.0 && f < 2.0 )
	    {
	        return ( ( -B - 6 * C ) * ( f * f * f )
	            + ( 6 * B + 30 * C ) * ( f *f ) +
	            ( - ( 12 * B ) - 48 * C  ) * f +
	            8 * B + 24 * C)/ 6.0;
	    }
	    else
	    {
	        return 0.0;
	    }
	} 

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
		int height = src.getHeight();

		if (dest == null)
			dest = createCompatibleDestImage(src, null);

		int[] inPixels = new int[width * height];
		int[] outPixels = new int[destH * destW];
		getRGB(src, 0, 0, width, height, inPixels);
		float rowRatio = ((float) height) / ((float) destH);
		float colRatio = ((float) width) / ((float) destW);
		int index = 0;
		for (int row = 0; row < destH; row++) {
			int ta = 0, tr = 0, tg = 0, tb = 0;
			double srcRow = ((float) row) * rowRatio;
			// 獲取整數部分座標 row Index
			double j = Math.floor(srcRow);
			// 獲取行的小數部分座標
			double t = srcRow - j;
			for (int col = 0; col < destW; col++) {
				double srcCol = ((float) col) * colRatio;
				// 獲取整數部分座標 column Index
				double k = Math.floor(srcCol);
				// 獲取列的小數部分座標
				double u = srcCol - k;
				double[] rgbData = new double[3];
				double rgbCoffeData = 0.0;
				for(int m=-1; m<3; m++)
				{
					for(int n=-1; n<3; n++)
					{
						int[] rgb = getPixel(j+m, k+n, width, height, inPixels);
						double f1 = 0.0d;
						double f2 = 0.0d;
						if(type == TRIANGLE__INTERPOLATION)
						{
							f1  = triangleInterpolation( ((double) m ) - t );
							f2 = triangleInterpolation ( -(( (double) n ) - u ) );	
						}
						else if(type == BELL__INTERPOLATION)
						{
							f1  = bellInterpolation( ((double) m ) - t );
							f2 = bellInterpolation ( -(( (double) n ) - u ) );	
						}
						else if(type == BSPLINE__INTERPOLATION)
						{
							f1  = bspLineInterpolation( ((double) m ) - t );
							f2 = bspLineInterpolation ( -(( (double) n ) - u ) );	
						}
						else
						{
							f1  = CatMullRomInterpolation( ((double) m ) - t );
							f2 = CatMullRomInterpolation ( -(( (double) n ) - u ) );							
						}
						// sum of weight
						rgbCoffeData += f2*f1;
						// sum of the RGB values
						rgbData[0] += rgb[0] * f2 * f1;
						rgbData[1] += rgb[1] * f2 * f1;
						rgbData[2] += rgb[2] * f2 * f1;
					}
				}
				ta = 255;
				// get Red/green/blue value for sample pixel
				tr = (int) (rgbData[0]/rgbCoffeData);
				tg = (int) (rgbData[1]/rgbCoffeData);
				tb = (int) (rgbData[2]/rgbCoffeData);
				index = row * destW + col;
				outPixels[index] = (ta << 24) | (clamp(tr) << 16)
						| (clamp(tg) << 8) | clamp(tb);
			}
		}
		setRGB(dest, 0, 0, destW, destH, outPixels);
		return dest;
	}
	
	public int clamp(int value) {
		return value > 255 ? 255 :
			(value < 0 ? 0 : value);
	}
	
	private int[] getPixel(double j, double k, int width, int height,
			int[] inPixels) {
		int row = (int) j;
		int col = (int) k;
		if (row >= height) {
			row = height - 1;
		}
		if (row < 0) {
			row = 0;
		}
		if (col < 0) {
			col = 0;
		}
		if (col >= width) {
			col = width - 1;
		}
		int index = row * width + col;
		int[] rgb = new int[3];
		rgb[0] = (inPixels[index] >> 16) & 0xff;
		rgb[1] = (inPixels[index] >> 8) & 0xff;
		rgb[2] = inPixels[index] & 0xff;
		return rgb;
	}
	public BufferedImage createCompatibleDestImage(
			BufferedImage src, ColorModel dstCM) {
        if ( dstCM == null )
            dstCM = src.getColorModel();
        return new BufferedImage(dstCM, 
        		dstCM.createCompatibleWritableRaster(destW, destH), 
        		dstCM.isAlphaPremultiplied(), null);
    }
}
執行效果:原圖

雙立方插值放大之後:


總結:

基於這裏三種方法實現的雙立方插值之後圖片跟原圖像相比,都有必定模糊

這裏時候可以經過興許處理實現圖像銳化與對照度提高就能夠獲得Sharpen版本號

固然也可以經過尋找更加合適的R(x)函數來實現雙立方卷積插值過程時保留

圖像邊緣與對照度。

必定要包括轉載

相關文章
相關標籤/搜索