Python高手之路【三】python基礎之函數

基本數據類型補充: 


 set 是一個無序且不重複的元素集合html

 1 class set(object):  2     """
 3  set() -> new empty set object  4  set(iterable) -> new set object  5      
 6  Build an unordered collection of unique elements.  7     """
 8     def add(self, *args, **kwargs): # real signature unknown
 9         """
 10  Add an element to a set,添加元素  11          
 12  This has no effect if the element is already present.  13         """
 14         pass
 15  
 16     def clear(self, *args, **kwargs): # real signature unknown
 17         """ Remove all elements from this set. 清除內容"""
 18         pass
 19  
 20     def copy(self, *args, **kwargs): # real signature unknown
 21         """ Return a shallow copy of a set. 淺拷貝 """
 22         pass
 23  
 24     def difference(self, *args, **kwargs): # real signature unknown
 25         """
 26  Return the difference of two or more sets as a new set. A中存在,B中不存在  27          
 28  (i.e. all elements that are in this set but not the others.)  29         """
 30         pass
 31  
 32     def difference_update(self, *args, **kwargs): # real signature unknown
 33         """ Remove all elements of another set from this set. 從當前集合中刪除和B中相同的元素"""
 34         pass
 35  
 36     def discard(self, *args, **kwargs): # real signature unknown
 37         """
 38  Remove an element from a set if it is a member.  39          
 40  If the element is not a member, do nothing. 移除指定元素,不存在不保錯  41         """
 42         pass
 43  
 44     def intersection(self, *args, **kwargs): # real signature unknown
 45         """
 46  Return the intersection of two sets as a new set. 交集  47          
 48  (i.e. all elements that are in both sets.)  49         """
 50         pass
 51  
 52     def intersection_update(self, *args, **kwargs): # real signature unknown
 53         """ Update a set with the intersection of itself and another. 取交集並更更新到A中 """
 54         pass
 55  
 56     def isdisjoint(self, *args, **kwargs): # real signature unknown
 57         """ Return True if two sets have a null intersection. 若是沒有交集,返回True,不然返回False"""
 58         pass
 59  
 60     def issubset(self, *args, **kwargs): # real signature unknown
 61         """ Report whether another set contains this set. 是不是子序列"""
 62         pass
 63  
 64     def issuperset(self, *args, **kwargs): # real signature unknown
 65         """ Report whether this set contains another set. 是不是父序列"""
 66         pass
 67  
 68     def pop(self, *args, **kwargs): # real signature unknown
 69         """
 70  Remove and return an arbitrary set element.  71  Raises KeyError if the set is empty. 移除元素  72         """
 73         pass
 74  
 75     def remove(self, *args, **kwargs): # real signature unknown
 76         """
 77  Remove an element from a set; it must be a member.  78          
 79  If the element is not a member, raise a KeyError. 移除指定元素,不存在保錯  80         """
 81         pass
 82  
 83     def symmetric_difference(self, *args, **kwargs): # real signature unknown
 84         """
 85  Return the symmetric difference of two sets as a new set. 對稱差集  86          
 87  (i.e. all elements that are in exactly one of the sets.)  88         """
 89         pass
 90  
 91     def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
 92         """ Update a set with the symmetric difference of itself and another. 對稱差集,並更新到a中 """
 93         pass
 94  
 95     def union(self, *args, **kwargs): # real signature unknown
 96         """
 97  Return the union of sets as a new set. 並集  98          
 99  (i.e. all elements that are in either set.) 100         """
101         pass
102  
103     def update(self, *args, **kwargs): # real signature unknown
104         """ Update a set with the union of itself and others. 更新 """
105         pass

 1:建立

1 s = set() 2 s = {11,22,33,55}

2:轉換

1 li = [11,22,33,44] 2 tu = (11,22,33,44) 3 st = '123'
4 s = set(li)

 3:intersection , intersection_update方法

a = {11,22,33,44} b = {22,66,77,88} ret = a.intersection(b) print(ret)

intersection取得兩個集合中的交集元素,並將這些元素以一個新的集合返回給一個變量接收node

a = {11,22,33,44} b = {22,66,77,88} a.intersection_update(b) print(a)

intersection_update取得兩個集合的交集元素,並更新a集合python

4:isdisjoint , issubset , issuperset方法

1 s = {11,22,33,44} 2 b = {11,22,77,55} 3 ret = s.isdisjoint(b)#有交集返回False,沒有交集返回True
4 print(ret) 5 ## False

issubset判斷是否爲子集c++

a = {11,22,33,44} b = {11,44} ret = b.issubset(a) print(ret) ##########################################
True

issuperset判斷是否爲父集git

a = {11,22,33,44} b = {11,44} ret = a.issubset(b) print(ret) ##########################################
False

5:discard , remove , pop

1 s = {11,22,33,44} 2 s.remove(11) 3 print(s) 4 s.discard(22) 5 print(s) 6 s.pop() 7 print(s)

三者都能達到移除元素的效果,區別在於remove移除集合中不存在的元素時會報錯,discard移除不存在的元素是不會報錯,pop沒法精確控制移除哪一個元素,按其自身的規則隨機移除元素,返回被移除的元素,可使用變量接收其返回值web

6:symmetric_difference取差集

 1 s = {11,22,33,44}  2 b = {11,22,77,55}  3 r1 = s.difference(b)  4 r2 = b.difference(s)  5 print(r1)  6 print(r2)  7 ret = s.symmetric_difference(b)  8 print(ret)  9 ## set([33, 44])
10 ## set([77, 55])
11 ## set([33, 44, 77, 55])

symmetric_difference返回兩個集合中不是交集的元素數據庫

上面的代碼中,將symmetric_difference換成symmetric_difference_update則表示將兩個集合中不是交集的部分賦值給sapi

7:union , update方法

1 s = {11,22,33,44} 2 b = {11,22,77,55} 3 ret = s.union(b) 4 print(ret) 5 ## set([33, 11, 44, 77, 22, 55])

union方法合併兩個集合安全

1 s = {11,22,33,44} 2 b = {11,22,77,55} 3 s.update(b) 4 print(s) 5 ## set([33, 11, 44, 77, 22, 55])

update方法更新s集合,將b集合中的元素添加到s集合中!update方法也能夠傳遞一個列表,如:update([23,45,67])bash

 練習題:有下面兩個字典

要求:

1)兩個字典中有相同鍵的,則將new_dict中的值更新到old_dict對應鍵的值

2)old_dict中存在的鍵且new_dict中沒有的鍵,在old_dict中刪除,並把new_dict中的鍵值更新到old_dict中

3)最後輸出old_dict

 1 # 數據庫中原有
 2 old_dict = {  3     "#1":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 },  4     "#2":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 },  5     "#3":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 }  6 }  7    
 8 # cmdb 新彙報的數據
 9 new_dict = { 10     "#1":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 800 }, 11     "#3":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 }, 12     "#4":{ 'hostname':'c2', 'cpu_count': 2, 'mem_capicity': 80 } 13 }
old_keys = set(old_dict.keys()) new_keys = set(new_dict.keys()) #須要更新元素的鍵 update_keys = old_keys.intersection(new_keys) print(update_keys) #須要刪除元素的鍵 del_keys = old_keys.difference(new_keys) #須要添加元素的鍵 add_keys = new_keys.difference(old_keys) print(del_keys) print(add_keys) update_keys = list(update_keys) for i in update_keys : old_dict[i] = new_dict[i] del_keys = list(del_keys) for j in del_keys : del old_dict[j] for k in list(add_keys) : old_dict[k] = new_dict[k] print(old_dict) ######################################## {'#3': {'hostname': 'c1', 'cpu_count': 2, 'mem_capicity': 80}, '#1': {'hostname': 'c1', 'cpu_count': 2, 'mem_capicity': 800}, '#4': {'hostname': 'c2', 'cpu_count': 2, 'mem_capicity': 80}}
答案

collections系列

1、計數器(counter)

Counter是對字典類型的補充,用於追蹤值的出現次數。

ps:具有字典的全部功能 + 本身的功能

c = Counter('abcdeabcdabcaba')
print c
輸出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
  1 ########################################################################
  2 ###  Counter
  3 ########################################################################
  4 
  5 class Counter(dict):
  6     '''Dict subclass for counting hashable items.  Sometimes called a bag
  7     or multiset.  Elements are stored as dictionary keys and their counts
  8     are stored as dictionary values.
  9 
 10     >>> c = Counter('abcdeabcdabcaba')  # count elements from a string
 11 
 12     >>> c.most_common(3)                # three most common elements
 13     [('a', 5), ('b', 4), ('c', 3)]
 14     >>> sorted(c)                       # list all unique elements
 15     ['a', 'b', 'c', 'd', 'e']
 16     >>> ''.join(sorted(c.elements()))   # list elements with repetitions
 17     'aaaaabbbbcccdde'
 18     >>> sum(c.values())                 # total of all counts
 19 
 20     >>> c['a']                          # count of letter 'a'
 21     >>> for elem in 'shazam':           # update counts from an iterable
 22     ...     c[elem] += 1                # by adding 1 to each element's count
 23     >>> c['a']                          # now there are seven 'a'
 24     >>> del c['b']                      # remove all 'b'
 25     >>> c['b']                          # now there are zero 'b'
 26 
 27     >>> d = Counter('simsalabim')       # make another counter
 28     >>> c.update(d)                     # add in the second counter
 29     >>> c['a']                          # now there are nine 'a'
 30 
 31     >>> c.clear()                       # empty the counter
 32     >>> c
 33     Counter()
 34 
 35     Note:  If a count is set to zero or reduced to zero, it will remain
 36     in the counter until the entry is deleted or the counter is cleared:
 37 
 38     >>> c = Counter('aaabbc')
 39     >>> c['b'] -= 2                     # reduce the count of 'b' by two
 40     >>> c.most_common()                 # 'b' is still in, but its count is zero
 41     [('a', 3), ('c', 1), ('b', 0)]
 42 
 43     '''
 44     # References:
 45     #   http://en.wikipedia.org/wiki/Multiset
 46     #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
 47     #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
 48     #   http://code.activestate.com/recipes/259174/
 49     #   Knuth, TAOCP Vol. II section 4.6.3
 50 
 51     def __init__(self, iterable=None, **kwds):
 52         '''Create a new, empty Counter object.  And if given, count elements
 53         from an input iterable.  Or, initialize the count from another mapping
 54         of elements to their counts.
 55 
 56         >>> c = Counter()                           # a new, empty counter
 57         >>> c = Counter('gallahad')                 # a new counter from an iterable
 58         >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
 59         >>> c = Counter(a=4, b=2)                   # a new counter from keyword args
 60 
 61         '''
 62         super(Counter, self).__init__()
 63         self.update(iterable, **kwds)
 64 
 65     def __missing__(self, key):
 66         """ 對於不存在的元素,返回計數器爲0 """
 67         'The count of elements not in the Counter is zero.'
 68         # Needed so that self[missing_item] does not raise KeyError
 69         return 0
 70 
 71     def most_common(self, n=None):
 72         """ 數量大於等n的全部元素和計數器 """
 73         '''List the n most common elements and their counts from the most
 74         common to the least.  If n is None, then list all element counts.
 75 
 76         >>> Counter('abcdeabcdabcaba').most_common(3)
 77         [('a', 5), ('b', 4), ('c', 3)]
 78 
 79         '''
 80         # Emulate Bag.sortedByCount from Smalltalk
 81         if n is None:
 82             return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
 83         return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))
 84 
 85     def elements(self):
 86         """ 計數器中的全部元素,注:此處非全部元素集合,而是包含全部元素集合的迭代器 """
 87         '''Iterator over elements repeating each as many times as its count.
 88 
 89         >>> c = Counter('ABCABC')
 90         >>> sorted(c.elements())
 91         ['A', 'A', 'B', 'B', 'C', 'C']
 92 
 93         # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
 94         >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
 95         >>> product = 1
 96         >>> for factor in prime_factors.elements():     # loop over factors
 97         ...     product *= factor                       # and multiply them
 98         >>> product
 99 
100         Note, if an element's count has been set to zero or is a negative
101         number, elements() will ignore it.
102 
103         '''
104         # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
105         return _chain.from_iterable(_starmap(_repeat, self.iteritems()))
106 
107     # Override dict methods where necessary
108 
109     @classmethod
110     def fromkeys(cls, iterable, v=None):
111         # There is no equivalent method for counters because setting v=1
112         # means that no element can have a count greater than one.
113         raise NotImplementedError(
114             'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')
115 
116     def update(self, iterable=None, **kwds):
117         """ 更新計數器,其實就是增長;若是原來沒有,則新建,若是有則加一 """
118         '''Like dict.update() but add counts instead of replacing them.
119 
120         Source can be an iterable, a dictionary, or another Counter instance.
121 
122         >>> c = Counter('which')
123         >>> c.update('witch')           # add elements from another iterable
124         >>> d = Counter('watch')
125         >>> c.update(d)                 # add elements from another counter
126         >>> c['h']                      # four 'h' in which, witch, and watch
127 
128         '''
129         # The regular dict.update() operation makes no sense here because the
130         # replace behavior results in the some of original untouched counts
131         # being mixed-in with all of the other counts for a mismash that
132         # doesn't have a straight-forward interpretation in most counting
133         # contexts.  Instead, we implement straight-addition.  Both the inputs
134         # and outputs are allowed to contain zero and negative counts.
135 
136         if iterable is not None:
137             if isinstance(iterable, Mapping):
138                 if self:
139                     self_get = self.get
140                     for elem, count in iterable.iteritems():
141                         self[elem] = self_get(elem, 0) + count
142                 else:
143                     super(Counter, self).update(iterable) # fast path when counter is empty
144             else:
145                 self_get = self.get
146                 for elem in iterable:
147                     self[elem] = self_get(elem, 0) + 1
148         if kwds:
149             self.update(kwds)
150 
151     def subtract(self, iterable=None, **kwds):
152         """ 相減,原來的計數器中的每個元素的數量減去後添加的元素的數量 """
153         '''Like dict.update() but subtracts counts instead of replacing them.
154         Counts can be reduced below zero.  Both the inputs and outputs are
155         allowed to contain zero and negative counts.
156 
157         Source can be an iterable, a dictionary, or another Counter instance.
158 
159         >>> c = Counter('which')
160         >>> c.subtract('witch')             # subtract elements from another iterable
161         >>> c.subtract(Counter('watch'))    # subtract elements from another counter
162         >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
163         >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
164         -1
165 
166         '''
167         if iterable is not None:
168             self_get = self.get
169             if isinstance(iterable, Mapping):
170                 for elem, count in iterable.items():
171                     self[elem] = self_get(elem, 0) - count
172             else:
173                 for elem in iterable:
174                     self[elem] = self_get(elem, 0) - 1
175         if kwds:
176             self.subtract(kwds)
177 
178     def copy(self):
179         """ 拷貝 """
180         'Return a shallow copy.'
181         return self.__class__(self)
182 
183     def __reduce__(self):
184         """ 返回一個元組(類型,元組) """
185         return self.__class__, (dict(self),)
186 
187     def __delitem__(self, elem):
188         """ 刪除元素 """
189         'Like dict.__delitem__() but does not raise KeyError for missing values.'
190         if elem in self:
191             super(Counter, self).__delitem__(elem)
192 
193     def __repr__(self):
194         if not self:
195             return '%s()' % self.__class__.__name__
196         items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
197         return '%s({%s})' % (self.__class__.__name__, items)
198 
199     # Multiset-style mathematical operations discussed in:
200     #       Knuth TAOCP Volume II section 4.6.3 exercise 19
201     #       and at http://en.wikipedia.org/wiki/Multiset
202     #
203     # Outputs guaranteed to only include positive counts.
204     #
205     # To strip negative and zero counts, add-in an empty counter:
206     #       c += Counter()
207 
208     def __add__(self, other):
209         '''Add counts from two counters.
210 
211         >>> Counter('abbb') + Counter('bcc')
212         Counter({'b': 4, 'c': 2, 'a': 1})
213 
214         '''
215         if not isinstance(other, Counter):
216             return NotImplemented
217         result = Counter()
218         for elem, count in self.items():
219             newcount = count + other[elem]
220             if newcount > 0:
221                 result[elem] = newcount
222         for elem, count in other.items():
223             if elem not in self and count > 0:
224                 result[elem] = count
225         return result
226 
227     def __sub__(self, other):
228         ''' Subtract count, but keep only results with positive counts.
229 
230         >>> Counter('abbbc') - Counter('bccd')
231         Counter({'b': 2, 'a': 1})
232 
233         '''
234         if not isinstance(other, Counter):
235             return NotImplemented
236         result = Counter()
237         for elem, count in self.items():
238             newcount = count - other[elem]
239             if newcount > 0:
240                 result[elem] = newcount
241         for elem, count in other.items():
242             if elem not in self and count < 0:
243                 result[elem] = 0 - count
244         return result
245 
246     def __or__(self, other):
247         '''Union is the maximum of value in either of the input counters.
248 
249         >>> Counter('abbb') | Counter('bcc')
250         Counter({'b': 3, 'c': 2, 'a': 1})
251 
252         '''
253         if not isinstance(other, Counter):
254             return NotImplemented
255         result = Counter()
256         for elem, count in self.items():
257             other_count = other[elem]
258             newcount = other_count if count < other_count else count
259             if newcount > 0:
260                 result[elem] = newcount
261         for elem, count in other.items():
262             if elem not in self and count > 0:
263                 result[elem] = count
264         return result
265 
266     def __and__(self, other):
267         ''' Intersection is the minimum of corresponding counts.
268 
269         >>> Counter('abbb') & Counter('bcc')
270         Counter({'b': 1})
271 
272         '''
273         if not isinstance(other, Counter):
274             return NotImplemented
275         result = Counter()
276         for elem, count in self.items():
277             other_count = other[elem]
278             newcount = count if count < other_count else other_count
279             if newcount > 0:
280                 result[elem] = newcount
281         return result
282 
283 Counter
Counter

2、有序字典(orderedDict )

orderdDict是對字典類型的補充,他記住了字典元素添加的順序

  1 class OrderedDict(dict):
  2     'Dictionary that remembers insertion order'
  3     # An inherited dict maps keys to values.
  4     # The inherited dict provides __getitem__, __len__, __contains__, and get.
  5     # The remaining methods are order-aware.
  6     # Big-O running times for all methods are the same as regular dictionaries.
  7 
  8     # The internal self.__map dict maps keys to links in a doubly linked list.
  9     # The circular doubly linked list starts and ends with a sentinel element.
 10     # The sentinel element never gets deleted (this simplifies the algorithm).
 11     # Each link is stored as a list of length three:  [PREV, NEXT, KEY].
 12 
 13     def __init__(self, *args, **kwds):
 14         '''Initialize an ordered dictionary.  The signature is the same as
 15         regular dictionaries, but keyword arguments are not recommended because
 16         their insertion order is arbitrary.
 17 
 18         '''
 19         if len(args) > 1:
 20             raise TypeError('expected at most 1 arguments, got %d' % len(args))
 21         try:
 22             self.__root
 23         except AttributeError:
 24             self.__root = root = []                     # sentinel node
 25             root[:] = [root, root, None]
 26             self.__map = {}
 27         self.__update(*args, **kwds)
 28 
 29     def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
 30         'od.__setitem__(i, y) <==> od[i]=y'
 31         # Setting a new item creates a new link at the end of the linked list,
 32         # and the inherited dictionary is updated with the new key/value pair.
 33         if key not in self:
 34             root = self.__root
 35             last = root[0]
 36             last[1] = root[0] = self.__map[key] = [last, root, key]
 37         return dict_setitem(self, key, value)
 38 
 39     def __delitem__(self, key, dict_delitem=dict.__delitem__):
 40         'od.__delitem__(y) <==> del od[y]'
 41         # Deleting an existing item uses self.__map to find the link which gets
 42         # removed by updating the links in the predecessor and successor nodes.
 43         dict_delitem(self, key)
 44         link_prev, link_next, _ = self.__map.pop(key)
 45         link_prev[1] = link_next                        # update link_prev[NEXT]
 46         link_next[0] = link_prev                        # update link_next[PREV]
 47 
 48     def __iter__(self):
 49         'od.__iter__() <==> iter(od)'
 50         # Traverse the linked list in order.
 51         root = self.__root
 52         curr = root[1]                                  # start at the first node
 53         while curr is not root:
 54             yield curr[2]                               # yield the curr[KEY]
 55             curr = curr[1]                              # move to next node
 56 
 57     def __reversed__(self):
 58         'od.__reversed__() <==> reversed(od)'
 59         # Traverse the linked list in reverse order.
 60         root = self.__root
 61         curr = root[0]                                  # start at the last node
 62         while curr is not root:
 63             yield curr[2]                               # yield the curr[KEY]
 64             curr = curr[0]                              # move to previous node
 65 
 66     def clear(self):
 67         'od.clear() -> None.  Remove all items from od.'
 68         root = self.__root
 69         root[:] = [root, root, None]
 70         self.__map.clear()
 71         dict.clear(self)
 72 
 73     # -- the following methods do not depend on the internal structure --
 74 
 75     def keys(self):
 76         'od.keys() -> list of keys in od'
 77         return list(self)
 78 
 79     def values(self):
 80         'od.values() -> list of values in od'
 81         return [self[key] for key in self]
 82 
 83     def items(self):
 84         'od.items() -> list of (key, value) pairs in od'
 85         return [(key, self[key]) for key in self]
 86 
 87     def iterkeys(self):
 88         'od.iterkeys() -> an iterator over the keys in od'
 89         return iter(self)
 90 
 91     def itervalues(self):
 92         'od.itervalues -> an iterator over the values in od'
 93         for k in self:
 94             yield self[k]
 95 
 96     def iteritems(self):
 97         'od.iteritems -> an iterator over the (key, value) pairs in od'
 98         for k in self:
 99             yield (k, self[k])
100 
101     update = MutableMapping.update
102 
103     __update = update # let subclasses override update without breaking __init__
104 
105     __marker = object()
106 
107     def pop(self, key, default=__marker):
108         '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
109         value.  If key is not found, d is returned if given, otherwise KeyError
110         is raised.
111 
112         '''
113         if key in self:
114             result = self[key]
115             del self[key]
116             return result
117         if default is self.__marker:
118             raise KeyError(key)
119         return default
120 
121     def setdefault(self, key, default=None):
122         'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
123         if key in self:
124             return self[key]
125         self[key] = default
126         return default
127 
128     def popitem(self, last=True):
129         '''od.popitem() -> (k, v), return and remove a (key, value) pair.
130         Pairs are returned in LIFO order if last is true or FIFO order if false.
131 
132         '''
133         if not self:
134             raise KeyError('dictionary is empty')
135         key = next(reversed(self) if last else iter(self))
136         value = self.pop(key)
137         return key, value
138 
139     def __repr__(self, _repr_running={}):
140         'od.__repr__() <==> repr(od)'
141         call_key = id(self), _get_ident()
142         if call_key in _repr_running:
143             return '...'
144         _repr_running[call_key] = 1
145         try:
146             if not self:
147                 return '%s()' % (self.__class__.__name__,)
148             return '%s(%r)' % (self.__class__.__name__, self.items())
149         finally:
150             del _repr_running[call_key]
151 
152     def __reduce__(self):
153         'Return state information for pickling'
154         items = [[k, self[k]] for k in self]
155         inst_dict = vars(self).copy()
156         for k in vars(OrderedDict()):
157             inst_dict.pop(k, None)
158         if inst_dict:
159             return (self.__class__, (items,), inst_dict)
160         return self.__class__, (items,)
161 
162     def copy(self):
163         'od.copy() -> a shallow copy of od'
164         return self.__class__(self)
165 
166     @classmethod
167     def fromkeys(cls, iterable, value=None):
168         '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
169         If not specified, the value defaults to None.
170 
171         '''
172         self = cls()
173         for key in iterable:
174             self[key] = value
175         return self
176 
177     def __eq__(self, other):
178         '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
179         while comparison to a regular mapping is order-insensitive.
180 
181         '''
182         if isinstance(other, OrderedDict):
183             return dict.__eq__(self, other) and all(_imap(_eq, self, other))
184         return dict.__eq__(self, other)
185 
186     def __ne__(self, other):
187         'od.__ne__(y) <==> od!=y'
188         return not self == other
189 
190     # -- the following methods support python 3.x style dictionary views --
191 
192     def viewkeys(self):
193         "od.viewkeys() -> a set-like object providing a view on od's keys"
194         return KeysView(self)
195 
196     def viewvalues(self):
197         "od.viewvalues() -> an object providing a view on od's values"
198         return ValuesView(self)
199 
200     def viewitems(self):
201         "od.viewitems() -> a set-like object providing a view on od's items"
202         return ItemsView(self)
203 
204 OrderedDict
OrderedDict

3、默認字典(defaultdict) 

defaultdict是對字典的類型的補充,他默認給字典的值設置了一個類型。

 1 class defaultdict(dict):
 2     """
 3     defaultdict(default_factory[, ...]) --> dict with default factory
 4     
 5     The default factory is called without arguments to produce
 6     a new value when a key is not present, in __getitem__ only.
 7     A defaultdict compares equal to a dict with the same items.
 8     All remaining arguments are treated the same as if they were
 9     passed to the dict constructor, including keyword arguments.
10     """
11     def copy(self): # real signature unknown; restored from __doc__
12         """ D.copy() -> a shallow copy of D. """
13         pass
14 
15     def __copy__(self, *args, **kwargs): # real signature unknown
16         """ D.copy() -> a shallow copy of D. """
17         pass
18 
19     def __getattribute__(self, name): # real signature unknown; restored from __doc__
20         """ x.__getattribute__('name') <==> x.name """
21         pass
22 
23     def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
24         """
25         defaultdict(default_factory[, ...]) --> dict with default factory
26         
27         The default factory is called without arguments to produce
28         a new value when a key is not present, in __getitem__ only.
29         A defaultdict compares equal to a dict with the same items.
30         All remaining arguments are treated the same as if they were
31         passed to the dict constructor, including keyword arguments.
32         
33         # (copied from class doc)
34         """
35         pass
36 
37     def __missing__(self, key): # real signature unknown; restored from __doc__
38         """
39         __missing__(key) # Called by __getitem__ for missing key; pseudo-code:
40           if self.default_factory is None: raise KeyError((key,))
41           self[key] = value = self.default_factory()
42           return value
43         """
44         pass
45 
46     def __reduce__(self, *args, **kwargs): # real signature unknown
47         """ Return state information for pickling. """
48         pass
49 
50     def __repr__(self): # real signature unknown; restored from __doc__
51         """ x.__repr__() <==> repr(x) """
52         pass
53 
54     default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
55     """Factory for default value called by __missing__()."""
56 
57 defaultdict
defaultdict

使用方法:

1 import collections
2 dic = collections.defaultdict(list)
3 dic['k1'].append('alext')
4 print(dic)

練習:

1 有以下值集合 [11,22,33,44,55,66,77,88,99,90...],將全部大於 66 的值保存至字典的第一個key中,將小於 66 的值保存至第二個key的值中。
2 即: {'k1': 大於66 , 'k2': 小於66}
 1 values = [11, 22, 33,44,55,66,77,88,99,90]
 2 
 3 my_dict = {}
 4 
 5 for value in  values:
 6     if value>66:
 7         if my_dict.has_key('k1'):
 8             my_dict['k1'].append(value)
 9         else:
10             my_dict['k1'] = [value]
11     else:
12         if my_dict.has_key('k2'):
13             my_dict['k2'].append(value)
14         else:
15             my_dict['k2'] = [value]
原生字典
 1 from collections import defaultdict
 2 
 3 values = [11, 22, 33,44,55,66,77,88,99,90]
 4 
 5 my_dict = defaultdict(list)
 6 
 7 for value in  values:
 8     if value>66:
 9         my_dict['k1'].append(value)
10     else:
11         my_dict['k2'].append(value)
12 
13 defaultdict字典解決方法
14 
15 默認字典
默認字典

4、可命名元組(namedtuple) 

根據nametuple能夠建立一個包含tuple全部功能以及其餘功能的類型。

import collections
MytupleClass = collections.namedtuple('MytupleClass',['x','y','z'])
obj = MytupleClass(11,33,44)
print(obj.x)
print(obj.y)
print(obj.z)
class Mytuple(__builtin__.tuple)
 |  Mytuple(x, y)
 |  
 |  Method resolution order:
 |      Mytuple
 |      __builtin__.tuple
 |      __builtin__.object
 |  
 |  Methods defined here:
 |  
 |  __getnewargs__(self)
 |      Return self as a plain tuple.  Used by copy and pickle.
 |  
 |  __getstate__(self)
 |      Exclude the OrderedDict from pickling
 |  
 |  __repr__(self)
 |      Return a nicely formatted representation string
 |  
 |  _asdict(self)
 |      Return a new OrderedDict which maps field names to their values
 |  
 |  _replace(_self, **kwds)
 |      Return a new Mytuple object replacing specified fields with new values
 |  
 |  ----------------------------------------------------------------------
 |  Class methods defined here:
 |  
 |  _make(cls, iterable, new=<built-in method __new__ of type object>, len=<built-in function len>) from __builtin__.type
 |      Make a new Mytuple object from a sequence or iterable
 |  
 |  ----------------------------------------------------------------------
 |  Static methods defined here:
 |  
 |  __new__(_cls, x, y)
 |      Create new instance of Mytuple(x, y)
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  __dict__
 |      Return a new OrderedDict which maps field names to their values
 |  
 |  x
 |      Alias for field number 0
 |  
 |  y
 |      Alias for field number 1
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |  
 |  _fields = ('x', 'y')
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from __builtin__.tuple:
 |  
 |  __add__(...)
 |      x.__add__(y) <==> x+y
 |  
 |  __contains__(...)
 |      x.__contains__(y) <==> y in x
 |  
 |  __eq__(...)
 |      x.__eq__(y) <==> x==y
 |  
 |  __ge__(...)
 |      x.__ge__(y) <==> x>=y
 |  
 |  __getattribute__(...)
 |      x.__getattribute__('name') <==> x.name
 |  
 |  __getitem__(...)
 |      x.__getitem__(y) <==> x[y]
 |  
 |  __getslice__(...)
 |      x.__getslice__(i, j) <==> x[i:j]
 |      
 |      Use of negative indices is not supported.
 |  
 |  __gt__(...)
 |      x.__gt__(y) <==> x>y
 |  
 |  __hash__(...)
 |      x.__hash__() <==> hash(x)
 |  
 |  __iter__(...)
 |      x.__iter__() <==> iter(x)
 |  
 |  __le__(...)
 |      x.__le__(y) <==> x<=y
 |  
 |  __len__(...)
 |      x.__len__() <==> len(x)
 |  
 |  __lt__(...)
 |      x.__lt__(y) <==> x<y
 |  
 |  __mul__(...)
 |      x.__mul__(n) <==> x*n
 |  
 |  __ne__(...)
 |      x.__ne__(y) <==> x!=y
 |  
 |  __rmul__(...)
 |      x.__rmul__(n) <==> n*x
 |  
 |  __sizeof__(...)
 |      T.__sizeof__() -- size of T in memory, in bytes
 |  
 |  count(...)
 |      T.count(value) -> integer -- return number of occurrences of value
 |  
 |  index(...)
 |      T.index(value, [start, [stop]]) -> integer -- return first index of value.
 |      Raises ValueError if the value is not present.

Mytuple
Mytuple

5、雙向隊列(deque)

一個線程安全的雙向隊列

class deque(object):
    """
    deque([iterable[, maxlen]]) --> deque object
    
    Build an ordered collection with optimized access from its endpoints.
    """
    def append(self, *args, **kwargs): # real signature unknown
        """ Add an element to the right side of the deque. """
        pass

    def appendleft(self, *args, **kwargs): # real signature unknown
        """ Add an element to the left side of the deque. """
        pass

    def clear(self, *args, **kwargs): # real signature unknown
        """ Remove all elements from the deque. """
        pass

    def count(self, value): # real signature unknown; restored from __doc__
        """ D.count(value) -> integer -- return number of occurrences of value """
        return 0

    def extend(self, *args, **kwargs): # real signature unknown
        """ Extend the right side of the deque with elements from the iterable """
        pass

    def extendleft(self, *args, **kwargs): # real signature unknown
        """ Extend the left side of the deque with elements from the iterable """
        pass

    def pop(self, *args, **kwargs): # real signature unknown
        """ Remove and return the rightmost element. """
        pass

    def popleft(self, *args, **kwargs): # real signature unknown
        """ Remove and return the leftmost element. """
        pass

    def remove(self, value): # real signature unknown; restored from __doc__
        """ D.remove(value) -- remove first occurrence of value. """
        pass

    def reverse(self): # real signature unknown; restored from __doc__
        """ D.reverse() -- reverse *IN PLACE* """
        pass

    def rotate(self, *args, **kwargs): # real signature unknown
        """ Rotate the deque n steps to the right (default n=1).  If n is negative, rotates left. """
        pass

    def __copy__(self, *args, **kwargs): # real signature unknown
        """ Return a shallow copy of a deque. """
        pass

    def __delitem__(self, y): # real signature unknown; restored from __doc__
        """ x.__delitem__(y) <==> del x[y] """
        pass

    def __eq__(self, y): # real signature unknown; restored from __doc__
        """ x.__eq__(y) <==> x==y """
        pass

    def __getattribute__(self, name): # real signature unknown; restored from __doc__
        """ x.__getattribute__('name') <==> x.name """
        pass

    def __getitem__(self, y): # real signature unknown; restored from __doc__
        """ x.__getitem__(y) <==> x[y] """
        pass

    def __ge__(self, y): # real signature unknown; restored from __doc__
        """ x.__ge__(y) <==> x>=y """
        pass

    def __gt__(self, y): # real signature unknown; restored from __doc__
        """ x.__gt__(y) <==> x>y """
        pass

    def __iadd__(self, y): # real signature unknown; restored from __doc__
        """ x.__iadd__(y) <==> x+=y """
        pass

    def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__
        """
        deque([iterable[, maxlen]]) --> deque object
        
        Build an ordered collection with optimized access from its endpoints.
        # (copied from class doc)
        """
        pass

    def __iter__(self): # real signature unknown; restored from __doc__
        """ x.__iter__() <==> iter(x) """
        pass

    def __len__(self): # real signature unknown; restored from __doc__
        """ x.__len__() <==> len(x) """
        pass

    def __le__(self, y): # real signature unknown; restored from __doc__
        """ x.__le__(y) <==> x<=y """
        pass

    def __lt__(self, y): # real signature unknown; restored from __doc__
        """ x.__lt__(y) <==> x<y """
        pass

    @staticmethod # known case of __new__
    def __new__(S, *more): # real signature unknown; restored from __doc__
        """ T.__new__(S, ...) -> a new object with type S, a subtype of T """
        pass

    def __ne__(self, y): # real signature unknown; restored from __doc__
        """ x.__ne__(y) <==> x!=y """
        pass

    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ Return state information for pickling. """
        pass

    def __repr__(self): # real signature unknown; restored from __doc__
        """ x.__repr__() <==> repr(x) """
        pass

    def __reversed__(self): # real signature unknown; restored from __doc__
        """ D.__reversed__() -- return a reverse iterator over the deque """
        pass

    def __setitem__(self, i, y): # real signature unknown; restored from __doc__
        """ x.__setitem__(i, y) <==> x[i]=y """
        pass

    def __sizeof__(self): # real signature unknown; restored from __doc__
        """ D.__sizeof__() -- size of D in memory, in bytes """
        pass

    maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
    """maximum size of a deque or None if unbounded"""


    __hash__ = None

deque

deque
deque

注:既然有雙向隊列,也有單項隊列(先進先出 FIFO )

class Queue:
    """Create a queue object with a given maximum size.

    If maxsize is <= 0, the queue size is infinite.
    """
    def __init__(self, maxsize=0):
        self.maxsize = maxsize
        self._init(maxsize)
        # mutex must be held whenever the queue is mutating.  All methods
        # that acquire mutex must release it before returning.  mutex
        # is shared between the three conditions, so acquiring and
        # releasing the conditions also acquires and releases mutex.
        self.mutex = _threading.Lock()
        # Notify not_empty whenever an item is added to the queue; a
        # thread waiting to get is notified then.
        self.not_empty = _threading.Condition(self.mutex)
        # Notify not_full whenever an item is removed from the queue;
        # a thread waiting to put is notified then.
        self.not_full = _threading.Condition(self.mutex)
        # Notify all_tasks_done whenever the number of unfinished tasks
        # drops to zero; thread waiting to join() is notified to resume
        self.all_tasks_done = _threading.Condition(self.mutex)
        self.unfinished_tasks = 0

    def task_done(self):
        """Indicate that a formerly enqueued task is complete.

        Used by Queue consumer threads.  For each get() used to fetch a task,
        a subsequent call to task_done() tells the queue that the processing
        on the task is complete.

        If a join() is currently blocking, it will resume when all items
        have been processed (meaning that a task_done() call was received
        for every item that had been put() into the queue).

        Raises a ValueError if called more times than there were items
        placed in the queue.
        """
        self.all_tasks_done.acquire()
        try:
            unfinished = self.unfinished_tasks - 1
            if unfinished <= 0:
                if unfinished < 0:
                    raise ValueError('task_done() called too many times')
                self.all_tasks_done.notify_all()
            self.unfinished_tasks = unfinished
        finally:
            self.all_tasks_done.release()

    def join(self):
        """Blocks until all items in the Queue have been gotten and processed.

        The count of unfinished tasks goes up whenever an item is added to the
        queue. The count goes down whenever a consumer thread calls task_done()
        to indicate the item was retrieved and all work on it is complete.

        When the count of unfinished tasks drops to zero, join() unblocks.
        """
        self.all_tasks_done.acquire()
        try:
            while self.unfinished_tasks:
                self.all_tasks_done.wait()
        finally:
            self.all_tasks_done.release()

    def qsize(self):
        """Return the approximate size of the queue (not reliable!)."""
        self.mutex.acquire()
        n = self._qsize()
        self.mutex.release()
        return n

    def empty(self):
        """Return True if the queue is empty, False otherwise (not reliable!)."""
        self.mutex.acquire()
        n = not self._qsize()
        self.mutex.release()
        return n

    def full(self):
        """Return True if the queue is full, False otherwise (not reliable!)."""
        self.mutex.acquire()
        n = 0 < self.maxsize == self._qsize()
        self.mutex.release()
        return n

    def put(self, item, block=True, timeout=None):
        """Put an item into the queue.

        If optional args 'block' is true and 'timeout' is None (the default),
        block if necessary until a free slot is available. If 'timeout' is
        a non-negative number, it blocks at most 'timeout' seconds and raises
        the Full exception if no free slot was available within that time.
        Otherwise ('block' is false), put an item on the queue if a free slot
        is immediately available, else raise the Full exception ('timeout'
        is ignored in that case).
        """
        self.not_full.acquire()
        try:
            if self.maxsize > 0:
                if not block:
                    if self._qsize() == self.maxsize:
                        raise Full
                elif timeout is None:
                    while self._qsize() == self.maxsize:
                        self.not_full.wait()
                elif timeout < 0:
                    raise ValueError("'timeout' must be a non-negative number")
                else:
                    endtime = _time() + timeout
                    while self._qsize() == self.maxsize:
                        remaining = endtime - _time()
                        if remaining <= 0.0:
                            raise Full
                        self.not_full.wait(remaining)
            self._put(item)
            self.unfinished_tasks += 1
            self.not_empty.notify()
        finally:
            self.not_full.release()

    def put_nowait(self, item):
        """Put an item into the queue without blocking.

        Only enqueue the item if a free slot is immediately available.
        Otherwise raise the Full exception.
        """
        return self.put(item, False)

    def get(self, block=True, timeout=None):
        """Remove and return an item from the queue.

        If optional args 'block' is true and 'timeout' is None (the default),
        block if necessary until an item is available. If 'timeout' is
        a non-negative number, it blocks at most 'timeout' seconds and raises
        the Empty exception if no item was available within that time.
        Otherwise ('block' is false), return an item if one is immediately
        available, else raise the Empty exception ('timeout' is ignored
        in that case).
        """
        self.not_empty.acquire()
        try:
            if not block:
                if not self._qsize():
                    raise Empty
            elif timeout is None:
                while not self._qsize():
                    self.not_empty.wait()
            elif timeout < 0:
                raise ValueError("'timeout' must be a non-negative number")
            else:
                endtime = _time() + timeout
                while not self._qsize():
                    remaining = endtime - _time()
                    if remaining <= 0.0:
                        raise Empty
                    self.not_empty.wait(remaining)
            item = self._get()
            self.not_full.notify()
            return item
        finally:
            self.not_empty.release()

    def get_nowait(self):
        """Remove and return an item from the queue without blocking.

        Only get an item if one is immediately available. Otherwise
        raise the Empty exception.
        """
        return self.get(False)

    # Override these methods to implement other queue organizations
    # (e.g. stack or priority queue).
    # These will only be called with appropriate locks held

    # Initialize the queue representation
    def _init(self, maxsize):
        self.queue = deque()

    def _qsize(self, len=len):
        return len(self.queue)

    # Put a new item in the queue
    def _put(self, item):
        self.queue.append(item)

    # Get an item from the queue
    def _get(self):
        return self.queue.popleft()

Queue.Queue
Queue.Queue

三元運算


三元運算(三目運算),是對簡單的條件語句的縮寫。

1 # 書寫格式
2 result = 值1 if 條件 else 值2 3 # 若是條件成立,那麼將 「值1」 賦值給result變量,不然,將「值2」賦值給result變量
1 a = 1
2 name = 'poe' if a == 1 else 'jet'
3 print(name)

 深淺拷貝


1、數字和字符串

對於 數字 和 字符串 而言,賦值、淺拷貝和深拷貝無心義,由於其永遠指向同一個內存地址。

 1 import copy  2 # ######### 數字、字符串 #########
 3 n1 = 123
 4 # n1 = "i am alex age 10"
 5 print(id(n1))  6 # ## 賦值 ##
 7 n2 = n1  8 print(id(n2))  9 # ## 淺拷貝 ##
10 n2 = copy.copy(n1) 11 print(id(n2)) 12   
13 # ## 深拷貝 ##
14 n3 = copy.deepcopy(n1) 15 print(id(n3))

2、其餘基本數據類型

對於字典、元祖、列表 而言,進行賦值、淺拷貝和深拷貝時,其內存地址的變化是不一樣的。

一、賦值

賦值,只是建立一個變量,該變量指向原來內存地址,如:

1 n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]} 2   
3 n2 = n1

二、淺拷貝

淺拷貝,在內存中只額外建立第一層數據

1 import copy 2   
3 n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]} 4   
5 n3 = copy.copy(n1)

三、深拷貝

深拷貝,在內存中將全部的數據從新建立一份(排除最後一層,即:python內部對字符串和數字的優化)

1 import copy 2   
3 n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]} 4   
5 n4 = copy.deepcopy(n1)

函數


1:函數的定義

def 函數名(參數): ... 函數體 ... 返回值

函數的定義主要有以下要點:

def:表示函數的關鍵字
函數名:函數的名稱,往後根據函數名調用函數
函數體:函數中進行一系列的邏輯計算,如:發送郵件、計算出 [11,22,38,888,2]中的最大數等...
參數:爲函數體提供數據
返回值:當函數執行完畢後,能夠給調用者返回數據。

2:返回值

函數是一個功能塊,該功能到底執行成功與否,須要經過返回值來告知調用者。

以上要點中,比較重要有參數和返回值:

def 發送短信(): 發送短信的代碼... if 發送成功: return True else: return False while True: # 每次執行發送短信函數,都會將返回值自動賦值給result
    # 以後,能夠根據result來寫日誌,或重發等操做
 result = 發送短信() if result == False: 記錄日誌,短信發送失敗...

3:參數

函數有三種不一樣的參數:

普通參數

# ######### 定義函數 ######### 

# name 叫作函數func的形式參數,簡稱:形參
def func(name): print name # ######### 執行函數 #########  # 'wupeiqi' 叫作函數func的實際參數,簡稱:實參
func('poe')

默認參數

def func(name, age = 18): print "%s:%s" %(name,age) # 指定參數
func('poe', 19) # 使用默認參數
func('gin') 注:默認參數須要放在參數列表最後

動態參數

def f1(*a): print(a,type(a)) f1(123,456,[1,2,3],'who') ## ((123, 456, [1, 2, 3], 'who'), <type 'tuple'>)
def func(**kwargs): print args
# 執行方式一 func(name='poe',age=18) # 執行方式二 li = {'name':'poe', age:18, 'gender':'male'} func(**li)
def f1(*a,**b) :#一個星的參數必須在前,兩個星的參數必須在後
    print(a,type(a)) print(b,type(b)) f1(11,22,33,k1=1234,k2=456) ## ((11, 22, 33), <type 'tuple'>)({'k2': 456, 'k1': 1234}, <type 'dict'>)

爲動態參數傳入列表,元組,字典:(注:這幾種數據類型在函數傳參的時候只有引用傳遞,沒有值傳遞

def f1(*args) : print(args,type(args)) li = [1,2,3,4] f1(li) f1(*li) ## (([1, 2, 3, 4],), <type 'tuple'>) ## ((1, 2, 3, 4), <type 'tuple'>)

 

def f2(**kwargs) : print(kwargs,type(kwargs)) dic = {'k1':123,'k2':456} f2(k1 = dic) f2(**dic) ## ({'k1': {'k2': 456, 'k1': 123}}, <type 'dict'>) ## ({'k2': 456, 'k1': 123}, <type 'dict'>)

4:內置函數

注:查看詳細猛擊這裏

數據類型轉換函數

  1. chr(i) 函數返回ASCII碼對應的字符串
  2. print(chr(65)) print(chr(66)) print(chr(65)+chr(66)) ##########################################
    A B AB
  3. complex(real[,imaginary]) 函數可把字符串或數字轉換爲複數
  4. print(complex("2+1j")) print(complex("2")) print(complex(2,1)) ##########################################
    (2+1j) (2+0j) (2+1j)
  5. float(x) 函數把一個數字或字符串轉換成浮點數
  6. print(float(12)) print(float(12.2)) ##########################################
    12.0
    12.2
  7. long(x[,base]) 函數把數字和字符串轉換成長整數,base爲可選的基數
  8. list(x) 函數可將序列對象轉換成列表
  9. min(x[,y,z...]) 函數返回給定參數的最小值,參數能夠爲序列
  10. max(x[,y,z...]) 函數返回給定參數的最大值,參數能夠爲序列
  11. ord(x) 函數返回一個字符串參數的ASCII碼或Unicode值
  12. print(ord('a')) print(ord(u"A")) ##########################################
    97
    65
  13. str(obj) 函數把對象轉換成可打印字符串
  14. tuple(x) 函數把序列對象轉換成tuple
  15. type(x) 能夠接收任何東西做爲參數――並返回它的數據類型。整型、字符串、列表、字典、元組、函數、類、模塊,甚至類型對象均可以做爲參數被 type 函數接受

abs()函數:取絕對值

print(abs(-1.2))

all()函數與any函數:

all(iterable):若是iterable的任意一個元素爲0、''、False,則返回False,不然返回True

print(all(['a','b','c','d']))#True
print(all(['a','b','','d']))#False #注意:空元組、空列表返回值爲True,這裏要特別注意

any(iterable):若是iterable的全部元素都爲0、''、False,則返回False,不然返回True

print(any(['a','b','c','d']))#True
print(any(['a',0,' ',False]))#True
print(any([0,'',False]))#False

ascii(object) 函數:

返回一個可打印的對象字符串方式表示,若是是非ascii字符就會輸出\x,\u或\U等字符來表示。與python2版本里的repr()是等效的函數。

print(ascii(1)) print(ascii('a')) print(ascii(123)) print(ascii('中文'))#非ascii字符 ##########################################
1
'a'
123
'\u4e2d\u6587'

 

 lambda表達式:

學習條件運算時,對於簡單的 if else 語句,可使用三元運算來表示,即:

# 普通條件語句
if 1 == 1: name = 'poe'
else: name = 'bruce'
    
# 三元運算
name = 'poe' if 1 == 1 else 'bruce'

對於簡單的函數,也存在一種簡便的表示方式,即:lambda表達式

# ###################### 普通函數 ###################### # 定義函數(普通方式)
def func(arg): return arg + 1
    
# 執行函數
result = func(123) # ###################### lambda ######################
    
# 定義函數(lambda表達式)
my_lambda = lambda arg : arg + 1
    
# 執行函數
result = my_lambda(123) 

生成隨機數:

import random chars = ''
for i in range(4) : rand_num = random.randrange(0,4) if rand_num == 3 or rand_num == 1: rand_digit = random.randrange(0,10) chars += str(rand_digit) else: rand_case = random.randrange(65,90) case = chr(rand_case) chars += case print(chars)

 filter函數

filter()函數是 Python 內置的另外一個有用的高階函數,filter()函數接收一個函數 f 和一個list,這個函數 f 的做用是對每一個元素進行判斷,返回 True或 False,filter()根據判斷結果自動過濾掉不符合條件的元素,返回由符合條件元素組成的新list。

例1,要從一個list [1, 4, 6, 7, 9, 12, 17]中刪除偶數,保留奇數,首先,要編寫一個判斷奇數的函數:

# filter(fn,iterable)
def is_odd(x) : return x % 2 == 1 li = [1, 4, 6, 7, 9, 12, 17] result = filter(is_odd,li) print(result) ##########################################
[1, 7, 9, 17] 

例2:刪除 列表中的None 或者空字符串

li = ['test', None, '', 'str', '  ', 'END'] def is_not_empty(s) : return s and len(s.strip()) > 0 print(filter(is_not_empty,li)) ##########################################
['test', 'str', 'END']

例3:請利用filter()過濾出1~100中平方根是整數的數,即結果應該是:[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

import math def is_sqr(x) : return math.sqrt(x) % 1 == 0 print filter(is_sqr,range(1,101))

 以上三個函數均可以使用lambda表達式的寫法來書寫,如:

result = filter(lambda x : x % 2 == 1,[1,4,6,9,12,7,17]) print(result)

 map()函數

map()是 Python 內置的高階函數,它接收一個函數 f 和一個 list,並經過把函數 f 依次做用在 list 的每一個元素上,獲得一個新的 list 並返回

例如,對於list [1, 2, 3, 4, 5, 6, 7, 8, 9]若是但願把list的每一個元素都做平方,就能夠用map()函數

li = [1, 2, 3, 4, 5, 6, 7, 8, 9] print(li) def f(x) : return x*x r = list(map(f,[1, 2, 3, 4, 5, 6, 7, 8, 9])) print(r)

注:在python3裏面,map()的返回值已經再也不是list,而是iterators, 因此想要使用,只用將iterator 轉換成list 便可, 好比 list(map()) 。

進制轉換函數(如下四個函數能夠實現各進制間的互相轉換)

bin(x) :將整數x轉換爲二進制字符串,若是x不爲Python中int類型,x必須包含方法__index__()而且返回值爲integer

oct(x):將一個整數轉換成8進制字符串。若是傳入浮點數或者字符串均會報錯

hex(x):將一個整數轉換成16進制字符串。

int():

  • 傳入數值時,調用其__int__()方法,浮點數將向下取整
  • print(int(3))#3
    print(int(3.6))#3
  • 傳入字符串時,默認以10進制進行轉換
  • print(int('36'))#36
  • 字符串中容許包含"+"、"-"號,可是加減號與數值間不能有空格,數值後、符號前可出現空格
  • print(int('+36'))#36
  • 傳入字符串,並指定了進制,則按對應進制將字符串轉換成10進制整數
  • print(int('10',2))#2
    print(int('0o7',8))#7
    print(int('0x15',16))#21

open函數,該函數用於文件處理

操做文件時,通常須要經歷以下步驟:

  1. 打開文件
  2. 操做文件

一:打開文件

文件句柄 = open('文件路徑', '模式')

打開文件時,須要指定文件路徑和以何等方式打開文件,打開後,便可獲取該文件句柄,往後經過此文件句柄對該文件操做。

打開文件的模式有:

  • r ,只讀模式【默認】
  • w,只寫模式【不可讀;不存在則建立;存在則清空內容;】
  • x, 只寫模式【不可讀;不存在則建立,存在則報錯】
  • a, 追加模式【可讀; 不存在則建立;存在則只追加內容;】
f = open('test.log','r') data = f.read() f.close() print(data)

"+" 表示能夠同時讀寫某個文件

  • r+, 讀寫【可讀,可寫】
  • w+,寫讀【可讀,可寫】
  • x+ ,寫讀【可讀,可寫】
  • a+, 寫讀【可讀,可寫】
# r+ 模式
f = open('test.log','r+',encoding='utf-8') print(f.tell())#打印當前指針所在的位置,此時爲0
data = f.read() print(data) print(f.tell())#此時當前指針在文件最末尾
f.close()
# w+模式:先清空文件,再寫入文件,寫入文件後才能夠讀文件
f = open('test.log','w+',encoding="utf-8") f.write('python')#寫完後,指針到了最後
f.seek(0)#移動指針到開頭
data = f.read() f.close() print(data)
# a+模式:打開的同時,指針已經到最後, # 寫時,追加,指針到最後
f = open('test.log','a+',encoding="utf-8") print(f.tell())#讀取當前指針位置,此時指針已經到最後
f.write('c++') print(f.tell()) #此時要讀文件必須把指針移動到文件開頭
f.seek(0) data = f.read(); print(data) f.close()

"b"表示以字節的方式操做

  • rb 或 r+b
  • wb 或 w+b
  • xb 或 w+b
  • ab 或 a+b

注:以b方式打開時,讀取到的內容是字節類型,寫入時也須要提供字節類型

 二:文件操做

class file(object) def close(self): # real signature unknown; restored from __doc__
 關閉文件 """ close() -> None or (perhaps) an integer. Close the file. Sets data attribute .closed to True. A closed file cannot be used for further I/O operations. close() may be called more than once without error. Some kinds of file objects (for example, opened by popen()) may return an exit status upon closing. """
 
    def fileno(self): # real signature unknown; restored from __doc__
 文件描述符 """ fileno() -> integer "file descriptor". This is needed for lower-level file interfaces, such os.read(). """
        return 0 def flush(self): # real signature unknown; restored from __doc__
 刷新文件內部緩衝區 """ flush() -> None. Flush the internal I/O buffer. """
        pass
 
 
    def isatty(self): # real signature unknown; restored from __doc__
 判斷文件是不是贊成tty設備 """ isatty() -> true or false. True if the file is connected to a tty device. """
        return False def next(self): # real signature unknown; restored from __doc__
 獲取下一行數據,不存在,則報錯 """ x.next() -> the next value, or raise StopIteration """
        pass
 
    def read(self, size=None): # real signature unknown; restored from __doc__
 讀取指定字節數據 """ read([size]) -> read at most size bytes, returned as a string. If the size argument is negative or omitted, read until EOF is reached. Notice that when in non-blocking mode, less data than what was requested may be returned, even if no size parameter was given. """
        pass
 
    def readinto(self): # real signature unknown; restored from __doc__
 讀取到緩衝區,不要用,將被遺棄 """ readinto() -> Undocumented. Don't use this; it may go away. """
        pass
 
    def readline(self, size=None): # real signature unknown; restored from __doc__
 僅讀取一行數據 """ readline([size]) -> next line from the file, as a string. Retain newline. A non-negative size argument limits the maximum number of bytes to return (an incomplete line may be returned then). Return an empty string at EOF. """
        pass
 
    def readlines(self, size=None): # real signature unknown; restored from __doc__
 讀取全部數據,並根據換行保存值列表 """ readlines([size]) -> list of strings, each a line from the file. Call readline() repeatedly and return a list of the lines so read. The optional size argument, if given, is an approximate bound on the total number of bytes in the lines returned. """
        return [] def seek(self, offset, whence=None): # real signature unknown; restored from __doc__
 指定文件中指針位置 """ seek(offset[, whence]) -> None. Move to new file position. Argument offset is a byte count. Optional argument whence defaults to (offset from start of file, offset should be >= 0); other values are 1 (move relative to current position, positive or negative), and 2 (move relative to end of file, usually negative, although many platforms allow seeking beyond the end of a file). If the file is opened in text mode, only offsets returned by tell() are legal. Use of other offsets causes undefined behavior. Note that not all file objects are seekable. """
        pass
 
    def tell(self): # real signature unknown; restored from __doc__
 獲取當前指針位置 """ tell() -> current file position, an integer (may be a long integer). """
        pass
 
    def truncate(self, size=None): # real signature unknown; restored from __doc__
 截斷數據,僅保留指定以前數據 """ truncate([size]) -> None. Truncate the file to at most size bytes. Size defaults to the current file position, as returned by tell(). """
        pass
 
    def write(self, p_str): # real signature unknown; restored from __doc__
 寫內容 """ write(str) -> None. Write string str to file. Note that due to buffering, flush() or close() may be needed before the file on disk reflects the data written. """
        pass
 
    def writelines(self, sequence_of_strings): # real signature unknown; restored from __doc__
 將一個字符串列表寫入文件 """ writelines(sequence_of_strings) -> None. Write the strings to the file. Note that newlines are not added. The sequence can be any iterable object producing strings. This is equivalent to calling write() for each string. """
        pass
 
    def xreadlines(self): # real signature unknown; restored from __doc__
 可用於逐行讀取文件,非所有 """ xreadlines() -> returns self. For backward compatibility. File objects now include the performance optimizations previously implemented in the xreadlines module. """
        pass

2.x
2.x版本
class TextIOWrapper(_TextIOBase): """ Character and line based layer over a BufferedIOBase object, buffer. encoding gives the name of the encoding that the stream will be decoded or encoded with. It defaults to locale.getpreferredencoding(False). errors determines the strictness of encoding and decoding (see help(codecs.Codec) or the documentation for codecs.register) and defaults to "strict". newline controls how line endings are handled. It can be None, '', '\n', '\r', and '\r\n'. It works as follows: * On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before being returned to the caller. If it is '', universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input lines are only terminated by the given string, and the line ending is returned to the caller untranslated. * On output, if newline is None, any '\n' characters written are translated to the system default line separator, os.linesep. If newline is '' or '\n', no translation takes place. If newline is any of the other legal values, any '\n' characters written are translated to the given string. If line_buffering is True, a call to flush is implied when a call to write contains a newline character. """
    def close(self, *args, **kwargs): # real signature unknown
 關閉文件 pass

    def fileno(self, *args, **kwargs): # real signature unknown
 文件描述符 pass

    def flush(self, *args, **kwargs): # real signature unknown
 刷新文件內部緩衝區 pass

    def isatty(self, *args, **kwargs): # real signature unknown
 判斷文件是不是贊成tty設備 pass

    def read(self, *args, **kwargs): # real signature unknown
 讀取指定字節數據 pass

    def readable(self, *args, **kwargs): # real signature unknown
 是否可讀 pass

    def readline(self, *args, **kwargs): # real signature unknown
 僅讀取一行數據 pass

    def seek(self, *args, **kwargs): # real signature unknown
 指定文件中指針位置 pass

    def seekable(self, *args, **kwargs): # real signature unknown
 指針是否可操做 pass

    def tell(self, *args, **kwargs): # real signature unknown
 獲取指針位置 pass

    def truncate(self, *args, **kwargs): # real signature unknown
 截斷數據,僅保留指定以前數據 pass

    def writable(self, *args, **kwargs): # real signature unknown
 是否可寫 pass

    def write(self, *args, **kwargs): # real signature unknown
 寫內容 pass

    def __getstate__(self, *args, **kwargs): # real signature unknown
        pass

    def __init__(self, *args, **kwargs): # real signature unknown
        pass @staticmethod # known case of __new__
    def __new__(*args, **kwargs): # real signature unknown
        """ Create and return a new object. See help(type) for accurate signature. """
        pass

    def __next__(self, *args, **kwargs): # real signature unknown
        """ Implement next(self). """
        pass

    def __repr__(self, *args, **kwargs): # real signature unknown
        """ Return repr(self). """
        pass buffer = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 closed = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 encoding = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 errors = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 line_buffering = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 name = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 newlines = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 _CHUNK_SIZE = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
 _finalizing = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default

3.x
3.x版本

三:管理上下文

爲了不打開文件後忘記關閉,能夠經過管理上下文,即:

with open('log','r') as f: ...

如此方式,當with代碼塊執行完畢時,內部會自動關閉並釋放文件資源。

在Python 2.7 及之後,with又支持同時對多個文件的上下文進行管理,即:

with open('log1') as obj1, open('log2') as obj2: pass

可以使用此方法對一個文件進行讀操做,同時把數據又寫入到另外一個打開的文件中!

read()、readline() 和 readlines()

每種方法能夠接受一個變量以限制每次讀取的數據量,但它們一般不使用變量。 .read() 每次讀取整個文件,它一般用於將文件內容放到一個字符串變量中。然而 .read() 生成文件內容最直接的字符串表示,但對於連續的面向行的處理,它倒是沒必要要的,而且若是文件大於可用內存,則不可能實現這種處理。

.readline() 和 .readlines() 很是類似。它們都在相似於如下的結構中使用:

fh = open('c:\\autoexec.bat') for  line in fh.readlines(): print  line

.readline() 和 .readlines() 之間的差別是後者一次讀取整個文件,象 .read() 同樣。.readlines() 自動將文件內容分析成一個行的列表,該列表能夠由 Python 的 for ... in ... 結構進行處理。另外一方面,.readline() 每次只讀取一行,一般比 .readlines() 慢得多。僅當沒有足夠內存能夠一次讀取整個文件時,才應該使用 .readline()。

 練習題:用戶名與密碼的驗證

首先新建一個文件,這裏爲test.log文件,內容爲兩行以下:

admin$123 ginvip$123456

1:讓用戶選擇1或2,1爲登陸,2爲註冊

2:若是用戶選擇1,用戶輸入用戶名與密碼,而後與test.log文件中的用戶名與密碼進行驗證,驗證成功輸出「登陸成功」,不然「登陸失敗」

3:若是用戶選擇2,讓用戶輸入用戶名與密碼,並與test.log文件中的用戶名驗證,若是test.log中用戶名已經存在,則輸出「該用戶名已經存在」,不然將用戶輸入的用戶與密碼以上面test.log文件中的形式寫入test.log文件中

 1 def check_user(user) :  2     with open('test.log','r',encoding='utf-8') as f :  3         for line in f :  4             user_list = line.strip()  5             user_list = user_list.split('$')  6             if user == user_list[0] :  7                 return True  8         return False  9 def register(user,pwd) : 10     with open('test.log','a',encoding='utf-8') as f : 11         user_info = '\n' + user + '$' + pwd 12         if f.write(user_info) : 13             return True 14     return False 15 def login(user,pwd) : 16     with open('test.log','r',encoding='utf-8') as f : 17         for line in f: 18             user_list = line.strip() 19             user_list = user_list.split('$') 20             if user == user_list[0] and pwd == user_list[1]: 21                 return True 22         return False 23 def main() : 24     print('welcome to my website') 25     choice = input('1:login 2:register') 26     if choice == '2': 27         user = input('input username :') 28         pwd = input('input password : ') 29         if check_user(user) : 30             print('the username is exist') 31         else: 32             if register(user,pwd) : 33                 print('register success') 34             else: 35                 print('register failed') 36     elif choice == '1': 37         user = input('input username :') 38         pwd = input('input password : ') 39         if login(user,pwd) : 40             print('login success') 41         else: 42             print('login failed') 43 main()
View Code

 

冒泡排序


 

冒泡排序的原理:

def Bubble_sort(args) :
    for i in range(len(args)-1) :
        for j in range(len(args) -1):
            if args[j] > args[j+1]:
                temp = args[j]
                args[j] = args[j+1]
                args[j+1] = temp
    return args
li = [33,2,10,1,9,3,8]
print(Bubble_sort(li))

 練習題

一、簡述普通參數、指定參數、默認參數、動態參數的區別

 

二、寫函數,計算傳入字符串中【數字】、【字母】、【空格] 以及 【其餘】的個數

digit = 0 case = 0 space = 0 other = 0 def func2(s) : global digit,case,space,other if not isinstance(s,basestring) : print('the data type wrong!') return False for i in s : if i.isdigit() : digit += 1
        elif i.isalpha() : case += 1
        elif i.isspace() : space += 1
        else: other += 1 s = 'I love python , is num 1 , o_k' a = [1,2,3] func2(s) print(digit) print(case) print(space) print(other) ########################################
1
18
8
3 問題:判斷是否是字符串後直接退出函數,而不執行下面的代碼?
第2題答案

三、寫函數,判斷用戶傳入的對象(字符串、列表、元組)長度是否大於5。

def func3(v) : if len(v) > 5 : return True else: return False a = 'I love python , is num 1 , o_k' l = [1,2,3] t = (5,7,9,10,45,10) print(func3(t))
第三題答案

四、寫函數,檢查用戶傳入的對象(字符串、列表、元組)的每個元素是否含有空內容。

  

五、寫函數,檢查傳入列表的長度,若是大於2,那麼僅保留前兩個長度的內容,並將新內容返回給調用者。

def func5(lis) : if len(lis) > 2 : return lis[0:2] else : return False li = [1,2,3] print(func5(li)) ##########################################
[1, 2]
第五題答案

六、寫函數,檢查獲取傳入列表或元組對象的全部奇數位索引對應的元素,並將其做爲新列表返回給調用者。

def func6(lis) : new_lis = [] for k in range(len(lis)) : if k % 2 == 1 : new_lis.append(lis[k]) return new_lis li = [1,2,3,8,10,44,77] tu = ('poe','andy','jet','bruce','jacky') print(func6(tu)) ##########################################
['andy', 'bruce']
第六題答案

七、寫函數,檢查傳入字典的每個value的長度,若是大於2,那麼僅保留前兩個長度的內容,並將新內容返回給調用者。

dic = {"k1": "v1v1", "k2": [11,22,33,44]} PS:字典中的value只能是字符串或列表
def func7(d) : v = d.values() li = [] for i in v : if len(i) > 2: li.append(i[0:2]) return li print(func7(dic)) ##########################################
[[11, 22], 'v1']
第七題答案

八、寫函數,利用遞歸獲取斐波那契數列中的第 10 個數,並將該值返回給調用者

def fabonacci(n) :
    if n == 0 :
        return 0
    elif n == 1:
        return 1
    else:
        return fabonacci(n-1) + fabonacci(n-2)
print(fabonacci(10))
相關文章
相關標籤/搜索