Problem Description Let L denote the number of 1s in integer D’s binary representation. Given two integers S1 and S2, we call D a WYH number if S1≤L≤S2. With a given D, we would like to find the next WYH number Y, which is JUST larger than D. In other words, Y is the smallest WYH number among the numbers larger than D. Please write a program to solve this problem. Input The first line of input contains a number T indicating the number of test cases (T≤300000). Each test case consists of three integers D, S1, and S2, as described above. It is guaranteed that 0≤D<231 and D is a WYH number. Output For each test case, output a single line consisting of 「Case #X: Y」. X is the test case number starting from 1. Y is the next WYH number. Sample Input 3 11 2 4 22 3 3 15 2 5 Sample Output Case #1: 12 Case #2: 25 Case #3: 17 Source 2015 ACM/ICPC Asia Regional Hefei Online
這道題在比賽的時候我就是用的這個方法,可是一直超時。後來從新寫了一遍,用了G++過了。this
思路:spa
從小到大找一定超,我看限制條件一的個數是0~32差很少,這麼個循環是不會超時的。我就從i->s1~s2循環,裏面找一的個數爲i的。code
這裏由於要i個1,而後又要比L大那麼把第i個1前移一位。blog
下面這裏分兩個狀況:three
以須要3個1爲例ip
①11011->11100input
②10111->11001若是進位了,就在末尾補1.it
還有一種狀況就是找不到第i個1:就從後往前變0爲1,直到知足i個1.io
而後去每種1個數的最小值。class
證實正確性:
試想要i個1那麼不夠的話還要比他大是否是日後補就行,由於1放在越後面越小。
要是夠,由於要比他大,這裏可知1的個數比須要的多。咱們就要刪掉1,那麼刪哪些呢?到第i個1爲止,你後面在怎麼變①後面1變少,數值變小,不行②1變多,咱們如今要刪掉1,不行;
因此後面的都不行,那麼第i個1要進位了。而後進位完,1不夠了,最小就往最後面補。
#include<stdio.h> int main() { int T,s1,s2; __int64 L,p; int cas=0; scanf("%d",&T); while(T--) { scanf("%I64d%d%d",&L,&s1,&s2); p=(__int64)1<<40; if(L==0&&s1==0&&s2==0){ printf("Case #%d: 0\n",++cas); continue; } int flag=0; __int64 t; for(int i=s1;i<=s2;i++) { int s=0,f=0; t=(__int64)0; for(int j=32;j>=0;j--) { if(L&((__int64)1<<j))s++; if(s==i) { int z,k; for(k=j;k<=32;k++) {if(L&((__int64)1<<k)); else { t|=(__int64)1<<k; break; } } z=1; for(int kk=k+1;kk<=32;kk++) { if(L&((__int64)1<<kk))t|=(__int64)1<<kk,z++; } z=i-z; for(k=0;k<=32&&z>0;k++)t|=(__int64)1<<k,z--; p=p>t?t:p; f=1; break; } } if(!f) { s=i-s; t=L; for(int k=0;k<=32&&s>0;k++){ if(L&((__int64)1<<k)); else t|=(__int64)1<<k,s--; } p=p>t?t:p; } } printf("Case #%d: %I64d\n",++cas,p); } }