本文首發於我的博客https://kezunlin.me/post/b90033a9/,歡迎閱讀!html
Install and Configure Caffe on ubuntu 16.04python
requirements:linux
默認的protobuf,2.6.1測試經過。
此處,使用最新的3.6.1 也能夠,編譯caffe須要加上-std=c++11
see install and configure cuda 9.2 with cudnn 7.1 on ubuntu 16.04ios
tips: we need to recompile caffe with cudnn 7.1
before we compile caffe, move caffe/python/caffe/selective_search_ijcv_with_python
folder outside caffe source folder, otherwise error occurs.c++
see Part 1: compile protobuf-cpp on ubuntu 16.04git
which protoc /usr/local/bin/protoc protoc --version libprotoc 3.6.1
caffe使用static的libprotoc 3.6.1
see compile opencv on ubuntu 16.04github
which opencv_version /usr/local/bin/opencv_version opencv_version 3.3.0
python --version Python 2.7.12
check numpy
versionubuntu
import numpy numpy.__version__ '1.15.1' import numpy import inspect inspect.getfile(numpy) '/usr/local/lib/python2.7/dist-packages/numpy/__init__.pyc'
git clone https://github.com/BVLC/caffe.git cd caffe
update at 20180822.vim
if you change your local Makefile and git pull origin master
merge conflict, solutionsegmentfault
git checkout HEAD Makefile git pull origin master
mkdir build && cd build && cmake-gui ..
cmake-gui options
USE_CUDNN ON USE_OPENCV ON Build_python ON Build_python_layer ON BLAS atlas CMAKE_CXX_FLGAS -std=c++11 CMAKE_INSTALL_PREFIX /home/kezunlin/program/caffe/build/install
使用
-std=c++11
configure output
Dependencies: BLAS : Yes (Atlas) Boost : Yes (ver. 1.66) glog : Yes gflags : Yes protobuf : Yes (ver. 3.6.1) lmdb : Yes (ver. 0.9.17) LevelDB : Yes (ver. 1.18) Snappy : Yes (ver. 1.1.3) OpenCV : Yes (ver. 3.1.0) CUDA : Yes (ver. 9.2) NVIDIA CUDA: Target GPU(s) : Auto GPU arch(s) : sm_61 cuDNN : Yes (ver. 7.1.4) Python: Interpreter : /usr/bin/python2.7 (ver. 2.7.12) Libraries : /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.12) NumPy : /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.51.1) Documentaion: Doxygen : /usr/bin/doxygen (1.8.11) config_file : /home/kezunlin/program/caffe/.Doxyfile Install: Install path : /home/kezunlin/program/caffe-wy/build/install Configuring done
we can also usepython3.5
andnumpy 1.16.2
Python: Interpreter : /usr/bin/python3 (ver. 3.5.2) Libraries : /usr/lib/x86_64-linux-gnu/libpython3.5m.so (ver 3.5.2) NumPy : /home/kezunlin/.local/lib/python3.5/site-packages/numpy/core/include (ver 1.16.2)
use -std=c++11
, otherwise errors occur
make -j8 [ 1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto Scanning dependencies of target caffeproto [ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o In file included from /usr/include/c++/5/mutex:35:0, from /usr/local/include/google/protobuf/stubs/mutex.h:33, from /usr/local/include/google/protobuf/stubs/common.h:52, from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.h:9, from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.cc:4: /usr/include/c++/5/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support must be enabled with the -std=c++11 or -std=gnu++11 compiler options. #error This file requires compiler and library support \
vim /usr/local/cuda/include/host_config.h
# 將其中的第115行註釋掉: #error-- unsupported GNU version! gcc versions later than 4.9 are not supported! ======> //#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
Comment out the ifndef
// #ifndef GFLAGS_GFLAGS_H_ namespace gflags = google; // #endif // GFLAGS_GFLAGS_H_
make clean make -j8 make pycaffe
output
[ 1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto Scanning dependencies of target caffeproto [ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o [ 1%] Linking CXX static library ../../lib/libcaffeproto.a [ 1%] Built target caffeproto
libcaffeproto.a
static library
make install ls build/install bin include lib python share
will install to
build/install
folder
ls build/install/lib libcaffeproto.a libcaffe.so libcaffe.so.1.0.0
Target "caffe" has an INTERFACE_LINK_LIBRARIES property which differs from its LINK_INTERFACE_LIBRARIES properties.
fix ipython 6.1 version conflict
vim caffe/python/requirements.txt
ipython>=3.0.0 ====> ipython==5.4.1
reinstall ipython
pip install -r requirements.txt cd caffe/python python >>>import caffe
sudo apt-get install graphviz sudo pip install theano=0.9 # for theano d3viz sudo pip install pydot==1.1.0 sudo pip install pydot-ng # other usefull tools sudo pip install jupyter sudo pip install seaborn
we need to install graphviz, otherwise we get ERROR:"dot" not found in path
draw net
cd $CAFFE_HOME ./python/draw_net.py ./examples/mnist/lenet.prototxt ./examples/mnist/lenet.png eog ./examples/mnist/lenet.png
cd caffe ./examples/mnist/create_mnist.sh ./examples/mnist/train_lenet.sh cat ./examples/mnist/train_lenet.sh ./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@
output results
I0912 15:57:28.812655 14094 solver.cpp:327] Iteration 10000, loss = 0.00272129 I0912 15:57:28.812675 14094 solver.cpp:347] Iteration 10000, Testing net (#0) I0912 15:57:28.891481 14100 data_layer.cpp:73] Restarting data prefetching from start. I0912 15:57:28.893678 14094 solver.cpp:414] Test net output #0: accuracy = 0.9904 I0912 15:57:28.893707 14094 solver.cpp:414] Test net output #1: loss = 0.0276084 (* 1 = 0.0276084 loss) I0912 15:57:28.893714 14094 solver.cpp:332] Optimization Done. I0912 15:57:28.893719 14094 caffe.cpp:250] Optimization Done.
tips, for
caffe
, errors because no imdb data.
I0417 13:28:17.764714 35030 layer_factory.hpp:77] Creating layer mnist F0417 13:28:17.765067 35030 db_lmdb.hpp:15] Check failed: mdb_status == 0 (2 vs. 0) No such file or directory ---------------------
./tools/upgrade_net_proto_text old.prototxt new.prototxt ./tools/upgrade_net_proto_binary old.caffemodel new.caffemodel
./build/tools/caffe time --model='det/yolov3/yolov3.prototxt' --iterations=100 --gpu=0
I0313 10:15:41.888208 12527 caffe.cpp:408] Average Forward pass: 49.7012 ms.
I0313 10:15:41.888213 12527 caffe.cpp:410] Average Backward pass: 84.946 ms.
I0313 10:15:41.888248 12527 caffe.cpp:412] Average Forward-Backward: 134.85 ms.
./build/tools/caffe time --model='det/autotrain/yolo3-autotrain-mbn-416-5c.prototxt' --iterations=100 --gpu=0
I0313 10:19:27.283625 12894 caffe.cpp:408] Average Forward pass: 38.4823 ms.
I0313 10:19:27.283630 12894 caffe.cpp:410] Average Backward pass: 74.1656 ms.
I0313 10:19:27.283638 12894 caffe.cpp:412] Average Forward-Backward: 112.732 ms.
#include <caffe/caffe.hpp> #ifdef USE_OPENCV #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #endif // USE_OPENCV #include <algorithm> #include <iosfwd> #include <memory> #include <string> #include <utility> #include <vector> #ifdef USE_OPENCV using namespace caffe; // NOLINT(build/namespaces) using std::string; /* Pair (label, confidence) representing a prediction. */ typedef std::pair<string, float> Prediction; class Classifier { public: Classifier(const string& model_file, const string& trained_file, const string& mean_file, const string& label_file); std::vector<Prediction> Classify(const cv::Mat& img, int N = 5); private: void SetMean(const string& mean_file); std::vector<float> Predict(const cv::Mat& img); void WrapInputLayer(std::vector<cv::Mat>* input_channels); void Preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels); private: shared_ptr<Net<float> > net_; cv::Size input_geometry_; int num_channels_; cv::Mat mean_; std::vector<string> labels_; }; Classifier::Classifier(const string& model_file, const string& trained_file, const string& mean_file, const string& label_file) { #ifdef CPU_ONLY Caffe::set_mode(Caffe::CPU); #else Caffe::set_mode(Caffe::GPU); #endif /* Load the network. */ net_.reset(new Net<float>(model_file, TEST)); net_->CopyTrainedLayersFrom(trained_file); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input."; CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob<float>* input_layer = net_->input_blobs()[0]; num_channels_ = input_layer->channels(); CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels."; input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */ SetMean(mean_file); /* Load labels. */ std::ifstream labels(label_file.c_str()); CHECK(labels) << "Unable to open labels file " << label_file; string line; while (std::getline(labels, line)) labels_.push_back(string(line)); Blob<float>* output_layer = net_->output_blobs()[0]; CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension."; } static bool PairCompare(const std::pair<float, int>& lhs, const std::pair<float, int>& rhs) { return lhs.first > rhs.first; } /* Return the indices of the top N values of vector v. */ static std::vector<int> Argmax(const std::vector<float>& v, int N) { std::vector<std::pair<float, int> > pairs; for (size_t i = 0; i < v.size(); ++i) pairs.push_back(std::make_pair(v[i], i)); std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare); std::vector<int> result; for (int i = 0; i < N; ++i) result.push_back(pairs[i].second); return result; } /* Return the top N predictions. */ std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) { std::vector<float> output = Predict(img); N = std::min<int>(labels_.size(), N); std::vector<int> maxN = Argmax(output, N); std::vector<Prediction> predictions; for (int i = 0; i < N; ++i) { int idx = maxN[i]; predictions.push_back(std::make_pair(labels_[idx], output[idx])); } return predictions; } /* Load the mean file in binaryproto format. */ void Classifier::SetMean(const string& mean_file) { BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /* Convert from BlobProto to Blob<float> */ Blob<float> mean_blob; mean_blob.FromProto(blob_proto); CHECK_EQ(mean_blob.channels(), num_channels_) << "Number of channels of mean file doesn't match input layer."; /* The format of the mean file is planar 32-bit float BGR or grayscale. */ std::vector<cv::Mat> channels; float* data = mean_blob.mutable_cpu_data(); for (int i = 0; i < num_channels_; ++i) { /* Extract an individual channel. */ cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data); channels.push_back(channel); data += mean_blob.height() * mean_blob.width(); } /* Merge the separate channels into a single image. */ cv::Mat mean; cv::merge(channels, mean); /* Compute the global mean pixel value and create a mean image * filled with this value. */ cv::Scalar channel_mean = cv::mean(mean); mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean); } std::vector<float> Classifier::Predict(const cv::Mat& img) { Blob<float>* input_layer = net_->input_blobs()[0]; input_layer->Reshape(1, num_channels_, input_geometry_.height, input_geometry_.width); /* Forward dimension change to all layers. */ net_->Reshape(); std::vector<cv::Mat> input_channels; WrapInputLayer(&input_channels); Preprocess(img, &input_channels); net_->Forward(); /* Copy the output layer to a std::vector */ Blob<float>* output_layer = net_->output_blobs()[0]; const float* begin = output_layer->cpu_data(); const float* end = begin + output_layer->channels(); return std::vector<float>(begin, end); } /* Wrap the input layer of the network in separate cv::Mat objects * (one per channel). This way we save one memcpy operation and we * don't need to rely on cudaMemcpy2D. The last preprocessing * operation will write the separate channels directly to the input * layer. */ void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) { Blob<float>* input_layer = net_->input_blobs()[0]; int width = input_layer->width(); int height = input_layer->height(); float* input_data = input_layer->mutable_cpu_data(); for (int i = 0; i < input_layer->channels(); ++i) { cv::Mat channel(height, width, CV_32FC1, input_data); input_channels->push_back(channel); input_data += width * height; } } void Classifier::Preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels) { /* Convert the input image to the input image format of the network. */ cv::Mat sample; if (img.channels() == 3 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY); else if (img.channels() == 4 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY); else if (img.channels() == 4 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR); else if (img.channels() == 1 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR); else sample = img; cv::Mat sample_resized; if (sample.size() != input_geometry_) cv::resize(sample, sample_resized, input_geometry_); else sample_resized = sample; cv::Mat sample_float; if (num_channels_ == 3) sample_resized.convertTo(sample_float, CV_32FC3); else sample_resized.convertTo(sample_float, CV_32FC1); cv::Mat sample_normalized; cv::subtract(sample_float, mean_, sample_normalized); /* This operation will write the separate BGR planes directly to the * input layer of the network because it is wrapped by the cv::Mat * objects in input_channels. */ cv::split(sample_normalized, *input_channels); CHECK(reinterpret_cast<float*>(input_channels->at(0).data) == net_->input_blobs()[0]->cpu_data()) << "Input channels are not wrapping the input layer of the network."; } int main(int argc, char** argv) { if (argc != 6) { std::cerr << "Usage: " << argv[0] << " deploy.prototxt network.caffemodel" << " mean.binaryproto labels.txt img.jpg" << std::endl; return 1; } ::google::InitGoogleLogging(argv[0]); string model_file = argv[1]; string trained_file = argv[2]; string mean_file = argv[3]; string label_file = argv[4]; Classifier classifier(model_file, trained_file, mean_file, label_file); string file = argv[5]; std::cout << "---------- Prediction for " << file << " ----------" << std::endl; cv::Mat img = cv::imread(file, -1); CHECK(!img.empty()) << "Unable to decode image " << file; std::vector<Prediction> predictions = classifier.Classify(img); /* Print the top N predictions. */ for (size_t i = 0; i < predictions.size(); ++i) { Prediction p = predictions[i]; std::cout << std::fixed << std::setprecision(4) << p.second << " - \"" << p.first << "\"" << std::endl; } } #else int main(int argc, char** argv) { LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV."; } #endif // USE_OPENCV
find_package(OpenCV REQUIRED) set(Caffe_DIR "/home/kezunlin/program/caffe-wy/build/install/share/Caffe") # caffe-wy caffe # for CaffeConfig.cmake/ caffe-config.cmake find_package(Caffe) # offical caffe : There is no Caffe_INCLUDE_DIRS and Caffe_DEFINITIONS # refinedet caffe: OK. add_definitions(${Caffe_DEFINITIONS}) MESSAGE( [Main] " Caffe_INCLUDE_DIRS = ${Caffe_INCLUDE_DIRS}") MESSAGE( [Main] " Caffe_DEFINITIONS = ${Caffe_DEFINITIONS}") MESSAGE( [Main] " Caffe_LIBRARIES = ${Caffe_LIBRARIES}") # caffe MESSAGE( [Main] " Caffe_CPU_ONLY = ${Caffe_CPU_ONLY}") MESSAGE( [Main] " Caffe_HAVE_CUDA = ${Caffe_HAVE_CUDA}") MESSAGE( [Main] " Caffe_HAVE_CUDNN = ${Caffe_HAVE_CUDNN}") include_directories(${Caffe_INCLUDE_DIRS}) target_link_libraries(demo ${OpenCV_LIBS} ${Caffe_LIBRARIES} )
ldd demo
if error occurs:
libcaffe.so.1.0.0 => not found
fix
vim .bashrc # for caffe export LD_LIBRARY_PATH=/home/kezunlin/program/caffe-wy/build/install/lib:$LD_LIBRARY_PATH