【poj2396】 Budget

http://poj.org/problem?id=2396 (題目連接)ios

題意

  給出一個矩陣,給出每一行每一列的和,以及若干限制條件,限制了其中每個元素的上下界,求一種可行的方案使得每一行每一列數的和知足要求。網絡

Solution

  我已經徹底沒有網絡流思惟了,江化了= 。=spa

  源點向每一行和每一列連上下界都爲其對應和的邊,行與列之間連邊,邊的上下界爲對應格子的取值範圍。而後跑上下界網絡流找一條可行流就能夠了。blog

細節

  mdzz初值設太大爆int了=  =,還有這種事。。get

代碼

// poj2396
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<29)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std;

const int maxn=1010;
int head[maxn],fi[maxn],d[maxn],upp[maxn][maxn],low[maxn][maxn],id[maxn][maxn];
int n,m,s,c,t,S,T,SS,TT,cnt,sum,flag;
struct edge {int to,next,w;}e[maxn*maxn];

void link(int u,int v,int w) {
	e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
	e[++cnt]=(edge){u,head[v],0};head[v]=cnt;
}
bool bfs() {
	memset(d,-1,sizeof(d));
	queue<int> q;q.push(s);d[s]=0;
	while (!q.empty()) {
		int x=q.front();q.pop();
		for (int i=head[x];i;i=e[i].next)
			if (e[i].w && d[e[i].to]<0) d[e[i].to]=d[x]+1,q.push(e[i].to);
	}
	return d[t]>0;
}
int dfs(int x,int f) {
	if (x==t || f==0) return f;
	int w,used=0;
	for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
			w=dfs(e[i].to,min(e[i].w,f-used));
			used+=w,e[i].w-=w,e[i^1].w+=w;
			if (used==f) return used;
		}
	if (!used) d[x]=-1;
	return used;
}
int Dinic(int x,int y) {
	int flow=0;s=x,t=y;
	while (bfs()) flow+=dfs(x,inf);
	return flow;
}
void modify(int x,int y,char *r,int val) {
	if (r[0]=='<') upp[x][y]=min(upp[x][y],val-1);
	if (r[0]=='>') low[x][y]=max(low[x][y],val+1);
	if (r[0]=='=') {
		if (val>=low[x][y] && val<=upp[x][y]) upp[x][y]=low[x][y]=val;
		else flag=0;
	}
}

int main() {
	int Case;scanf("%d",&Case);
	while (Case--) {
		scanf("%d%d",&n,&m);
		for (int i=1;i<=n;i++)
			for (int j=1;j<=m;j++) upp[i][j]=1000,low[i][j]=0;
		memset(head,0,sizeof(head));
		memset(fi,0,sizeof(fi));
		S=0,T=n+m+1;SS=T+1,TT=SS+1;
		cnt=1;sum=0;flag=1;
		for (int x,i=1;i<=n;i++) {
			scanf("%d",&x);
			fi[S]-=x,fi[i]+=x;
		}
		for (int x,i=1;i<=m;i++) {
			scanf("%d",&x);
			fi[T]+=x,fi[i+n]-=x;
		}
		scanf("%d",&c);char ch[10];
		for (int x,y,z,i=1;i<=c;i++) {
			scanf("%d%d%s%d",&x,&y,ch,&z);
			if (!x && !y)
				for (int j=1;j<=n;j++)
					for (int k=1;k<=m;k++) modify(j,k,ch,z);
			else if (!x) for (int j=1;j<=n;j++) modify(j,y,ch,z);
			else if (!y) for (int j=1;j<=m;j++) modify(x,j,ch,z);
			else modify(x,y,ch,z);
		}
		for (int i=1;i<=n && flag;i++)
			for (int j=1;j<=m && flag;j++) {
				if (low[i][j]<=upp[i][j]) {
					fi[i]-=low[i][j],fi[n+j]+=low[i][j];
					link(i,n+j,upp[i][j]-low[i][j]);
					id[i][j]=cnt-1;
				}
				else flag=0;
			}
		if (!flag) {puts("IMPOSSIBLE\n");continue;}
		for (int i=S;i<=T;i++) {
			if (fi[i]<0) link(i,TT,-fi[i]);
			else link(SS,i,fi[i]),sum+=fi[i];
		}
		link(T,S,inf);
		if (sum!=Dinic(SS,TT)) {puts("IMPOSSIBLE\n");continue;}
		for (int i=1;i<=n;i++) {
			for (int j=1;j<=m;j++)
				printf("%d ",low[i][j]+e[id[i][j]^1].w);
			puts("");
		}
		puts("");
	}
	return 0;
}
相關文章
相關標籤/搜索