4 sum

FROM: https://leetcode.com/problems/4sum/算法

 

Given an array S of n integers, are there elements abc, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.數組

Note: The solution set must not contain duplicate quadruplets.app

For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.

A solution set is:
[
  [-1,  0, 0, 1],
  [-2, -1, 1, 2],
  [-2,  0, 0, 2]
]

最簡單直觀的辦法就是四層循環,依次相加,找出符合條件的四元數組便可,時間複雜度爲N*N * N * N;指針

固然有更快的算法;code

先考慮找出相加等於給定數字的二元數組的辦法:排序

1. 將數組排序;three

2. 兩個指針, i & j, 分別從頭和尾開始移動, 只考慮最簡單的狀況:element

    a) nums(i) + nums(j) > target; 由於已經排序, 因此有nums(i) + nums(j - 1) < nums(i) + nums(j), 因此將指針j向前移動1爲, 有可能獲得和target相等的數字;leetcode

    b) nums(i) + nums(j) < target; 相應的將i向後移動1位;get

    c) nums(i) + nums(j) == target; 這時已經找到一組複合條件的數字,分別將i 和j移動一位;

經過以上的步驟能夠O(N)的時間內解決2 sum的問題;

而後考慮找出相加等於給定數字的三元組的問題:

1. 排序;

2. 從前(或者從後)開始,依次處理每一個數字;

3. 從給定數字後面(或者前面)的子數組中, 尋找相加等於target - nums(i)的二元組;

4. 將第三步獲得的二元組加上nums(i)擴充爲3元組;

 

那麼四元組和三元組的解法是一致的, 先找到三元組, 而後擴充爲四元組;

 

package main

import (
	"fmt"
	"sort"
)

func main() {
	nums := []int{1, 0, -1, 0, -2, 2}
	result := fourSum(nums, 0)
	for _, x := range result {
		fmt.Printf("%v\n", x)
	}
}

func fourSum(nums []int, target int) [][]int {
	sort.Ints(nums)
	result := make([][]int, 0, 10)

	for i := len(nums) - 1; i > 2; i-- {
		if i < len(nums)-1 && nums[i] == nums[i+1] {
			continue
		}
		xs := threeSum(nums[:i], target-nums[i])
		for _, x := range xs {
			result = append(result, append(x, nums[i]))
		}
	}

	return result
}

func threeSum(nums []int, target int) [][]int {
	result := make([][]int, 0, 10)
	for i := len(nums) - 1; i > 1; i-- {
		if i < len(nums)-1 && nums[i] == nums[i+1] {
			continue
		}
		xs := twoSum(nums[:i], target-nums[i])
		for _, x := range xs {
			result = append(result, append(x, nums[i]))
		}
	}

	return result
}

func twoSum(nums []int, target int) [][]int {
	result := make([][]int, 0, 10)
	for i, j := 0, len(nums)-1; i < j; {
		if i > 0 && nums[i] == nums[i-1] {
			i++
			continue
		}

		if j < len(nums)-1 && nums[j] == nums[j+1] {
			j--
			continue
		}

		sum := nums[i] + nums[j]
		if sum < target {
			i++
		} else if sum > target {
			j--
		} else {
			result = append(result, []int{nums[i], nums[j]})
			i++
			j--
		}
	}
	return result
}
相關文章
相關標籤/搜索