給定一個長爲 \(n\) 的序列 \(\{a_i\}\) 對於 \(k \in [1, n]\) 求
\[ f_k = \sum_{i = 1}^{n} a_i^k \pmod {998244353} \]c++
\(n \le 2 \times 10^5\)git
不會牛頓恆等式TAT,參考了這位大佬的博客。函數
咱們令 \(F(x)\) 爲 \(f_k\) 的生成函數,咱們有
\[ \begin{aligned} F(x) &= \sum_{k} (\sum_{i = 1}^{n} a_i^k) x^k\\ &=\sum_{i = 1}^n \sum_k a_i^kx^k\\ &=\sum_{i = 1}^{n} \frac{1}{1 - a_ix}\\ \end{aligned} \]spa
這幾步都比較基礎,但看起來仍是挺不可作的,咱們用一些神奇的操做。
\[ \begin{aligned} F(x) &= \sum_{i = 1}^{n} (1 + \frac{a_ix}{1 - a_ix})\\ &= n - x \sum_{i= 1}^{n} \frac{-a_i}{1 - a_ix}\\ &= n - x \sum_{i = 1}^{n} \ln'(1 - a_ix)\\ &= n - x \ln'(\prod_{i = 1}^n(1 - a_ix)) \end{aligned} \].net
咱們先分治求出 \(\prod_{i = 1}^{n}(1 - a_ix)\) 而後套 \(\ln\) 的板子便可。\(\mathcal O(n \log^2 n)\)debug
#include <bits/stdc++.h> #define For(i, l, r) for (register int i = (l), i##end = int(r); i <= i##end; ++i) #define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i) #define Rep(i, r) for (register int i = (0), i##end = int(r); i < i##end; ++i) #define Set(a, v) memset(a, v, sizeof(a)) #define Cpy(a, b) memcpy(a, b, sizeof(a)) #define debug(x) cout << #x << ": " << (x) << endl using namespace std; typedef vector<int> VI; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; } template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() { int x(0), sgn(1); char ch(getchar()); for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1; for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48); return x * sgn; } void File() { #ifdef zjp_shadow freopen ("2409.in", "r", stdin); freopen ("2409.out", "w", stdout); #endif } const int Mod = 998244353; inline int fpm(int x, int power) { int res(1); for (; power; power >>= 1, x = 1ll * x * x % Mod) if (power & 1) res = 1ll * res * x % Mod; return res; } int findlen(int l) { int res = 1; while (res <= l) res <<= 1; return res; } template<int Maxn> struct Poly { const int g = 3, invg = fpm(g, Mod - 2); int rev[Maxn], W[Maxn], len; void NTT(int *P, int opt) { Rep (i, len) if (i < rev[i]) swap(P[i], P[rev[i]]); for (int i = 2, p; p = i >> 1, i <= len; i <<= 1) { W[0] = 1; W[1] = fpm(~opt ? g : invg, (Mod - 1) / i); For (k, 2, p - 1) W[k] = 1ll * W[k - 1] * W[1] % Mod; for (int j = 0; j < len; j += i) Rep (k, p) { int u = P[j + k], v = 1ll * P[j + k + p] * W[k] % Mod; P[j + k] = (u + v) % Mod; P[j + k + p] = (u - v + Mod) % Mod; } } if (!~opt) { int invn = fpm(len, Mod - 2); Rep (i, len) P[i] = 1ll * P[i] * invn % Mod; } } void Prepare(int lc) { int cnt = -1; for (len = 1; len <= lc; len <<= 1) ++ cnt; Rep (i, len) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << cnt); } int A[Maxn], B[Maxn], C[Maxn]; void Mult(int *a, int *b, int *c, int la, int lb) { int lc = la + lb; Prepare(lc); if (lc <= 400) { static int tmp[410] = {0}; For (i, 0, la) if (a[i]) For (j, 0, lb) tmp[i + j] = (tmp[i + j] + 1ll * a[i] * b[j]) % Mod; For (i, 0, lc) c[i] = tmp[i], tmp[i] = 0; return; } Rep (i, len) A[i] = i <= la ? a[i] : 0; NTT(A, 1); Rep (i, len) B[i] = i <= lb ? b[i] : 0; NTT(B, 1); Rep (i, len) C[i] = 1ll * A[i] * B[i] % Mod; NTT(C, -1); For (i, 0, lc) c[i] = C[i]; } VI Mult(VI a, VI b) { static int ta[Maxn], tb[Maxn], tc[Maxn]; VI c; Rep (i, a.size()) ta[i] = a[i]; Rep (i, b.size()) tb[i] = b[i]; Mult(ta, tb, tc, a.size() - 1, b.size() - 1); Rep (i, a.size() + b.size() - 1) c.push_back(tc[i]); return c; } void Inv(int *f, int *g, int lf) { if (lf == 1) return void(g[0] = fpm(f[0], Mod - 2)); Inv(f, g, lf >> 1); Prepare(lf << 1); Rep (i, len) A[i] = i < lf ? f[i] : 0; NTT(A, 1); Rep (i, len) B[i] = i < lf ? g[i] : 0; NTT(B, 1); Rep (i, len) C[i] = 1ll * A[i] * B[i] % Mod * B[i] % Mod; NTT(C, -1); Rep (i, lf) g[i] = (g[i] * 2ll + Mod - C[i]) % Mod; } int inv[Maxn]; Poly() { inv[1] = 1; For (i, 2, Maxn - 1) inv[i] = 1ll * inv[Mod % i] * (Mod - Mod / i) % Mod; } void Der(int *f, int *g, int lf) { For (i, 1, lf) g[i - 1] = 1ll * i * f[i] % Mod; g[lf] = 0; } void Int(int *f, int *g, int lf) { g[0] = 0; For (i, 1, lf + 1) g[i] = 1ll * f[i - 1] * inv[i] % Mod; } void Ln(int *f, int *g, int lf) { static int der[Maxn], tmp[Maxn]; Der(f, der, lf); Inv(f, tmp, lf); Mult(der, tmp, tmp, lf, lf); Int(tmp, g, lf); } }; const int N = 1 << 20; Poly<N> T; int n, a[N], f[N], g[N], ans[N]; VI Solve(int l, int r) { if (l == r) return {1, Mod - a[l]}; int mid = (l + r) >> 1; return T.Mult(Solve(l, mid), Solve(mid + 1, r)); } int main () { File(); int cases = read(); while (cases --) { For (i, 1, n = read()) a[i] = read() % Mod; VI res = Solve(1, n); For (i, 0, n) f[i] = res[i]; T.Ln(f, g, findlen(n)); T.Der(g, f, n); ans[0] = n; For (i, 1, n) ans[i] = Mod - f[i - 1]; int Ans = 0; For (i, 1, n) Ans ^= ans[i]; printf ("%d\n", Ans); } return 0; }