最近一直在瞭解關於kotlin協程的知識,那最好的學習資料天然是官方提供的學習文檔了,看了看後我就萌生了翻譯官方文檔的想法。先後花了要接近一個月時間,一共九篇文章,在這裏也分享出來,但願對讀者有所幫助。我的知識所限,有些翻譯得不是太順暢,也但願讀者能提出意見java
協程官方文檔:coroutines-guidegit
協程官方文檔中文翻譯:coroutines-cn-guidegithub
協程官方文檔中文譯者:leavesCexpress
[TOC]dom
select 表達式能夠同時等待多個掛起函數,並選擇第一個可用的函數來執行異步
選擇表達式是
kotlinx.coroutines
的一個實驗性的特性,這些 API 預計將在kotlinx.coroutines
庫的即將到來的更新中衍化,並可能會有突破性的變化async
咱們如今有兩個字符串生產者:fizz
和 buzz
。其中 fizz
每 300 毫秒生成一個字符串「Fizz」:ide
fun CoroutineScope.fizz() = produce<String> {
while (true) { // sends "Fizz" every 300 ms
delay(300)
send("Fizz")
}
}
複製代碼
接着 buzz
每 500 毫秒生成一個字符串「Buzz!」:函數
fun CoroutineScope.buzz() = produce<String> {
while (true) { // sends "Buzz!" every 500 ms
delay(500)
send("Buzz!")
}
}
複製代碼
使用掛起函數 receive,咱們能夠從兩個通道接收其中一個的數據。可是 select 表達式容許咱們使用其 onReceive 子句同時從二者接收:oop
suspend fun selectFizzBuzz(fizz: ReceiveChannel<String>, buzz: ReceiveChannel<String>) {
select<Unit> { // <Unit> means that this select expression does not produce any result
fizz.onReceive { value -> // this is the first select clause
println("fizz -> '$value'")
}
buzz.onReceive { value -> // this is the second select clause
println("buzz -> '$value'")
}
}
}
複製代碼
讓咱們運行代碼 7 次:
import kotlinx.coroutines.*
import kotlinx.coroutines.channels.*
import kotlinx.coroutines.selects.*
fun CoroutineScope.fizz() = produce<String> {
while (true) { // sends "Fizz" every 300 ms
delay(300)
send("Fizz")
}
}
fun CoroutineScope.buzz() = produce<String> {
while (true) { // sends "Buzz!" every 500 ms
delay(500)
send("Buzz!")
}
}
suspend fun selectFizzBuzz(fizz: ReceiveChannel<String>, buzz: ReceiveChannel<String>) {
select<Unit> { // <Unit> means that this select expression does not produce any result
fizz.onReceive { value -> // this is the first select clause
println("fizz -> '$value'")
}
buzz.onReceive { value -> // this is the second select clause
println("buzz -> '$value'")
}
}
}
fun main() = runBlocking<Unit> {
//sampleStart
val fizz = fizz()
val buzz = buzz()
repeat(7) {
selectFizzBuzz(fizz, buzz)
}
coroutineContext.cancelChildren() // cancel fizz & buzz coroutines
//sampleEnd
}
複製代碼
運行結果:
fizz -> 'Fizz'
buzz -> 'Buzz!'
fizz -> 'Fizz'
fizz -> 'Fizz'
buzz -> 'Buzz!'
fizz -> 'Fizz'
buzz -> 'Buzz!'
複製代碼
當通道關閉時,select 中的 onReceive 子句會失敗並致使相應的 select 引起異常。咱們可使用 onReceiveOrNull 子句在通道關閉時執行特定操做。下面的示例還顯示了 select 是一個返回其查詢方法結果的表達式:
suspend fun selectAorB(a: ReceiveChannel<String>, b: ReceiveChannel<String>): String =
select<String> {
a.onReceiveOrNull { value ->
if (value == null)
"Channel 'a' is closed"
else
"a -> '$value'"
}
b.onReceiveOrNull { value ->
if (value == null)
"Channel 'b' is closed"
else
"b -> '$value'"
}
}
複製代碼
注意,onReceiveOrNull 是一個擴展函數,僅可用於具備不可爲空元素的通道,這樣就不會意外混淆通道是已關閉仍是返回了空值這兩種狀況
讓咱們將其與生成四次「Hello」字符串的通道 a
和生成四次「World」字符串的通道 b
一塊兒使用:
import kotlinx.coroutines.*
import kotlinx.coroutines.channels.*
import kotlinx.coroutines.selects.*
suspend fun selectAorB(a: ReceiveChannel<String>, b: ReceiveChannel<String>): String =
select<String> {
a.onReceiveOrNull { value ->
if (value == null)
"Channel 'a' is closed"
else
"a -> '$value'"
}
b.onReceiveOrNull { value ->
if (value == null)
"Channel 'b' is closed"
else
"b -> '$value'"
}
}
fun main() = runBlocking<Unit> {
//sampleStart
val a = produce<String> {
repeat(4) { send("Hello $it") }
}
val b = produce<String> {
repeat(4) { send("World $it") }
}
repeat(8) { // print first eight results
println(selectAorB(a, b))
}
coroutineContext.cancelChildren()
//sampleEnd
}
複製代碼
這段代碼的結果很是有趣,因此咱們將在細節中分析它:
a -> 'Hello 0'
a -> 'Hello 1'
b -> 'World 0'
a -> 'Hello 2'
a -> 'Hello 3'
b -> 'World 1'
Channel 'a' is closed
Channel 'a' is closed
複製代碼
從中能夠觀察到幾點
首先,select 偏向於第一個子句。當同時能夠選擇多個子句時,將選擇其中的第一個子句。在這裏,兩個通道都在不斷地產生字符串,所以做爲 select 中的第一個子句的通道獲勝。可是,由於咱們使用的是無緩衝通道,因此 a 在其發送調用時會不時地被掛起,從而給了 b 發送的機會
第二個觀察結果是,當通道已經關閉時,onReceiveOrNull 將當即被選中
select 表達式有 onSend 子句,能夠與 selection 的偏向性質結合使用。 讓咱們寫一個整數生產者的例子,當主通道上的消費者跟不上時,它會將其值發送到 side
通道:
fun CoroutineScope.produceNumbers(side: SendChannel<Int>) = produce<Int> {
for (num in 1..10) { // produce 10 numbers from 1 to 10
delay(100) // every 100 ms
select<Unit> {
onSend(num) {} // Send to the primary channel
side.onSend(num) {} // or to the side channel
}
}
}
複製代碼
消費者將會很是緩慢,每一個數值處理須要 250 毫秒:
import kotlinx.coroutines.*
import kotlinx.coroutines.channels.*
import kotlinx.coroutines.selects.*
fun CoroutineScope.produceNumbers(side: SendChannel<Int>) = produce<Int> {
for (num in 1..10) { // produce 10 numbers from 1 to 10
delay(100) // every 100 ms
select<Unit> {
onSend(num) {} // Send to the primary channel
side.onSend(num) {} // or to the side channel
}
}
}
fun main() = runBlocking<Unit> {
//sampleStart
val side = Channel<Int>() // allocate side channel
launch { // this is a very fast consumer for the side channel
side.consumeEach { println("Side channel has $it") }
}
produceNumbers(side).consumeEach {
println("Consuming $it")
delay(250) // let us digest the consumed number properly, do not hurry
}
println("Done consuming")
coroutineContext.cancelChildren()
//sampleEnd
}
複製代碼
讓咱們看看會發生什麼:
Consuming 1
Side channel has 2
Side channel has 3
Consuming 4
Side channel has 5
Side channel has 6
Consuming 7
Side channel has 8
Side channel has 9
Consuming 10
Done consuming
複製代碼
延遲值可使用 onAwait 子句來查詢。讓咱們啓動一個異步函數,它在隨機的延遲後會延遲返回字符串:
fun CoroutineScope.asyncString(time: Int) = async {
delay(time.toLong())
"Waited for $time ms"
}
複製代碼
讓咱們隨機啓動十餘個異步函數,每一個都延遲隨機的時間
fun CoroutineScope.asyncStringsList(): List<Deferred<String>> {
val random = Random(3)
return List(12) { asyncString(random.nextInt(1000)) }
}
複製代碼
如今,main 函數等待它們中的第一個完成,並統計仍處於活動狀態的延遲值的數量。注意,咱們在這裏使用 select
表達式事實上是一種 Kotlin DSL,所以咱們可使用任意代碼爲它提供子句。在本例中,咱們遍歷一個延遲值列表,爲每一個延遲值提供 onAwait
子句。
import kotlinx.coroutines.*
import kotlinx.coroutines.selects.*
import java.util.*
fun CoroutineScope.asyncString(time: Int) = async {
delay(time.toLong())
"Waited for $time ms"
}
fun CoroutineScope.asyncStringsList(): List<Deferred<String>> {
val random = Random(3)
return List(12) { asyncString(random.nextInt(1000)) }
}
fun main() = runBlocking<Unit> {
//sampleStart
val list = asyncStringsList()
val result = select<String> {
list.withIndex().forEach { (index, deferred) ->
deferred.onAwait { answer ->
"Deferred $index produced answer '$answer'"
}
}
}
println(result)
val countActive = list.count { it.isActive }
println("$countActive coroutines are still active")
//sampleEnd
}
複製代碼
輸出結果:
Deferred 4 produced answer 'Waited for 128 ms'
11 coroutines are still active
複製代碼
如今咱們來編寫一個通道生產者函數,它消費一個產生延遲字符串的通道,並等待每一個接收的延遲值,但它只在下一個延遲值到達或者通道關閉以前處於運行狀態。此示例將 onReceiveOrNull 和 onAwait 子句放在同一個 select
中:
fun CoroutineScope.switchMapDeferreds(input: ReceiveChannel<Deferred<String>>) = produce<String> {
var current = input.receive() // start with first received deferred value
while (isActive) { // loop while not cancelled/closed
val next = select<Deferred<String>?> { // return next deferred value from this select or null
input.onReceiveOrNull { update ->
update // replaces next value to wait
}
current.onAwait { value ->
send(value) // send value that current deferred has produced
input.receiveOrNull() // and use the next deferred from the input channel
}
}
if (next == null) {
println("Channel was closed")
break // out of loop
} else {
current = next
}
}
}
複製代碼
爲了測試它,咱們將用一個簡單的異步函數,它在特定的延遲後返回特定的字符串:
fun CoroutineScope.asyncString(str: String, time: Long) = async {
delay(time)
str
}
複製代碼
main 函數只是啓動一個協程來打印 switchMapDeferreds
的結果並向它發送一些測試數據:
import kotlinx.coroutines.*
import kotlinx.coroutines.channels.*
import kotlinx.coroutines.selects.*
fun CoroutineScope.switchMapDeferreds(input: ReceiveChannel<Deferred<String>>) = produce<String> {
var current = input.receive() // start with first received deferred value
while (isActive) { // loop while not cancelled/closed
val next = select<Deferred<String>?> { // return next deferred value from this select or null
input.onReceiveOrNull { update ->
update // replaces next value to wait
}
current.onAwait { value ->
send(value) // send value that current deferred has produced
input.receiveOrNull() // and use the next deferred from the input channel
}
}
if (next == null) {
println("Channel was closed")
break // out of loop
} else {
current = next
}
}
}
fun CoroutineScope.asyncString(str: String, time: Long) = async {
delay(time)
str
}
fun main() = runBlocking<Unit> {
//sampleStart
val chan = Channel<Deferred<String>>() // the channel for test
launch { // launch printing coroutine
for (s in switchMapDeferreds(chan))
println(s) // print each received string
}
chan.send(asyncString("BEGIN", 100))
delay(200) // enough time for "BEGIN" to be produced
chan.send(asyncString("Slow", 500))
delay(100) // not enough time to produce slow
chan.send(asyncString("Replace", 100))
delay(500) // give it time before the last one
chan.send(asyncString("END", 500))
delay(1000) // give it time to process
chan.close() // close the channel ...
delay(500) // and wait some time to let it finish
//sampleEnd
}
複製代碼
代碼的執行結果:
BEGIN
Replace
END
Channel was closed
複製代碼