一、使用tf.train.Saver.save()方法保存模型網絡
tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph=True, write_state=True)dom
二、使用tf.train.Saver.restore方法價值模型函數
tf.train.Saver.restore(sess, save_path)this
下面經過一個代碼演示這兩個函數的使用方法rest
import tensorflow as tf
import numpy as np
x = tf.placeholder(tf.float32, shape=[None, 1])
y = 4 * x + 4
w = tf.Variable(tf.random_normal([1], -1, 1))
b = tf.Variable(tf.zeros([1]))
y_predict = w * x + b
loss = tf.reduce_mean(tf.square(y - y_predict))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
isTrain = False
train_steps = 100
checkpoint_steps = 50
checkpoint_dir = ''
saver = tf.train.Saver() # defaults to saving all variables - in this case w and b
x_data = np.reshape(np.random.rand(10).astype(np.float32), (10, 1))
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
if isTrain:
for i in xrange(train_steps):
sess.run(train, feed_dict={x: x_data})
if (i + 1) % checkpoint_steps == 0:
saver.save(sess, checkpoint_dir + 'model.ckpt', global_step=i+1)
else:
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
else:
pass
print(sess.run(w))
print(sess.run(b))