51nod 122八、1258 序列求和

這裏一次講兩題...貌似都是板子?html

因此兩題其實能夠一塊兒作 【霧c++

noteskey

總之就是伯努利數的兩道入門題啦,就是第二道有點鬼畜了,竟然要任意模數的!(好吧是 1e9+7 但也沒什麼區別了)git

伯努利數學習能夠看這裏學習

第二題的式子其實學習筆記裏已經有寫了...這裏就再推一遍吧~(否則沒什麼好寫的呢spa

注意下面的伯努利數 \(B\) 用的是 \(B^+\) 伯努利code

\[\begin{aligned} ANS=&S(n,k) \\=& {1\over k+1} \sum_{i=0}^k \begin{pmatrix} k+1\\i \end{pmatrix} B_i ~· n^{k+1-i} \\=& k! \sum_{i=0}^k {B_i\over i!} ~· {n^{k+1-i}\over (k+1-i)! }\end{aligned}\]htm

而後後面的式子一眼卷積,一遍...咳咳...一遍 MTT 出解...blog

code

而後第一題其實能夠暴力作的...可是反正第二題也是要打的,還打個 P 的題 1 暴力,固然是兩題一塊兒肝get

因此代碼只給第二道題的(雖然說兩道都能 A )... MTT 就抄個板子好了,我是不來再打一遍的,打錯還得調半天 XD數學

//by Judge #include<bits/stdc++.h> #define Rg register #define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(Rg int i=(a),I=(b)-1;i>I;--i) #define ll long long #define db double using namespace std; const db PI=acos(-1); const int mod=1e9+7; const int bl=32768; const int M=5e5+3; typedef int arr[M]; #ifndef Judge #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) #endif char buf[1<<21],*p1=buf,*p2=buf; inline bool cmax(int& a,int b){return a<b?a=b,1:0;} inline bool cmin(int& a,int b){return a>b?a=b,1:0;} inline int mul(int x,int y){return 1ll*x*y%mod;} inline int dec(int x,int y){return x<y?x-y+mod:x-y;} inline int inc(int x,int y){return x+y>=mod?x+y-mod:x+y;} inline ll read(){ ll x=0,f=1; char c=getchar(); for(;!isdigit(c);c=getchar()) if(c=='-') f=-1; for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f; } char sr[1<<21],z[20];int CCF=-1,Z; inline void Ot(){fwrite(sr,1,CCF+1,stdout),CCF=-1;} inline void print(int x,char chr='\n'){ if(CCF>1<<20)Ot();if(x<0)sr[++CCF]=45,x=-x; while(z[++Z]=x%10+48,x/=10); while(sr[++CCF]=z[Z],--Z);sr[++CCF]=chr; } int n,k,now,ans,d,limit; arr fac,inv,ifac,B,r,lg; db iv[M]; inline int qpow(int x,int p=mod-2,int s=1){ for(;p;p>>=1,x=mul(x,x)) if(p&1) s=mul(s,x); return s; } struct cp{ db x,y; cp(db _x,db _y=0){x=_x,y=_y;} cp(){} cp operator +(const cp& b)const{return cp(x+b.x,y+b.y);} cp operator -(const cp& b)const{return cp(x-b.x,y-b.y);} cp operator *(const cp& b)const{return cp(x*b.x-y*b.y,x*b.y+y*b.x);} cp operator *(const db& b)const{return cp(x*b,y*b);} cp operator ~()const{return cp(x,-y);} }w[2][M],x,y; inline void prep(){ for(;1<<d<limit;++d); fp(i,0,d) lg[1<<i]=i,iv[i]=(db)1.0/(1<<i); fp(i,1,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<(d-1)); for(int i=1,d=0;i<limit;i<<=1,++d) fp(k,0,i-1){ w[1][i+k]=cp(cos(PI*k*iv[d]),sin(PI*k*iv[d])); w[0][i+k]=cp(cos(PI*k*iv[d]),-sin(PI*k*iv[d])); } } inline void FFT(cp* a,int tp){ fp(i,0,limit-1) if(i<r[i]) swap(a[i],a[r[i]]); for(int mid=1;mid<limit;mid<<=1) for(int j=0;j<limit;j+=mid<<1) for(int k=0;k<mid;++k) x=a[j+k],y=w[tp][mid+k]*a[j+k+mid],a[j+k]=x+y,a[j+k+mid]=x-y; if(!tp) fp(i,0,limit-1) a[i]=a[i]*iv[d]; } inline void MTT(int* a,int* b,int* c,int n){ static cp f[M],g[M],p[M],q[M]; fp(i,0,n) f[i]=cp(a[i]>>15,a[i]&32767),g[i]=cp(b[i]>>15,b[i]&32767); fp(i,n+1,limit-1) f[i]=g[i]=cp(0,0); prep(),FFT(f,1),FFT(g,1); fp(i,0,limit-1){ cp t,f0,f1,g0,g1; t=~f[i?limit-i:0],f0=(f[i]-t)*cp(0,-0.5),f1=(f[i]+t)*0.5, t=~g[i?limit-i:0],g0=(g[i]-t)*cp(0,-0.5),g1=(g[i]+t)*0.5; p[i]=f1*g1,q[i]=f1*g0+f0*g1+f0*g0*cp(0,1); } FFT(p,0),FFT(q,0); fp(i,0,n) c[i]=(((ll)(p[i].x+0.5)%mod<<30)+((ll)(q[i].x+0.5)<<15)+((ll)(q[i].y+0.5)))%mod; } inline void get_inv(int* a,int* b,int n){ static arr c,d; if(n==1) return b[0]=qpow(a[0]),void(); get_inv(a,b,n>>1); int len=-1; for(limit=1;limit<=n;limit<<=1) ++len; fp(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<len); MTT(a,b,c,n),MTT(c,b,d,n); fp(i,0,n-1) b[i]=dec(inc(b[i],b[i]),d[i]); } inline void prep(int len){ inv[0]=inv[1]=ifac[0]=ifac[1]=fac[0]=fac[1]=1; fp(i,2,len) fac[i]=mul(fac[i-1l],i), inv[i]=mul(mod-mod/i,inv[mod%i]), ifac[i]=mul(ifac[i-1],inv[i]); get_inv(ifac+1,B,len<<1); B[1]=mod-B[1]; fp(i,0,len) B[i]=mul(B[i],fac[i]); } inline int C(int n,int m){return mul(fac[n],mul(ifac[m],ifac[n-m]));} int main(){ prep(65536); for(int T=read();T;--T,print(mul(ans,inv[k+1]))){ n=read()%mod,k=read(),ans=0; now=1; fd(i,k,0) now=mul(now,n),ans=inc(ans,mul(C(k+1,i),mul(B[i],now))); } return Ot(),0; }cpp

相關文章
相關標籤/搜索