boost::pool 庫速記

Boost::pool

使用示例

#include <iostream>
#include <vector>
#include <list>
#include <boost/pool/object_pool.hpp>
#include <boost/pool/pool_alloc.hpp>

#include <boost/timer/timer.hpp>

using namespace std;
using namespace boost;

const int MAXLENGTH = 100000;

class A
{
public:
    A()
    {
        cout << "Construct: " << endl;
    }
    A ( int a )
    {
        cout << "Construct: " << a << endl;
    }
    ~A()
    {
        cout << "Destruct" << endl;
    }
};
function<void ( void ) > pool_sample = []()
{
    cout << "==============================\n";
    boost::object_pool<A> p;
    A *ptr = p.construct ( 1 );
    p.destroy ( ptr );
};

function<void ( void ) > pool_sample_1 = []()
{
    cout << "==============================\n";
    boost::object_pool<A> p;
    A *ptr = p.malloc();
    cout << "malloc doesn't invoke constructor and destructor.\n";
    ptr = new ( ptr ) A ( 1 );
    ptr->~A();
    p.free ( ptr );
};


auto test_pool_alloc = []()
{
    cout << "==============================\n";
    vector<int, pool_allocator<int>> vec1;
    vector<int> vec2;
    {
        cout << "USE pool_allocator:\n";
        boost::timer::auto_cpu_timer t1;
        for ( int i = 0; i < MAXLENGTH; ++i )
        {
            vec1.push_back ( i );
            vec1.pop_back();
        }
    }
    {
        cout << "USE STL allocator:\n";
        boost::timer::auto_cpu_timer t2;
        for ( int i = 0; i < MAXLENGTH; ++i )
        {
            vec2.push_back ( i );
            vec2.pop_back();
        }
    }
};

auto test_fast_pool_alloc = []()
{
    cout << "==============================\n";
    list<int, fast_pool_allocator<int>> vec1;
    list<int> vec2;
    {
        cout << "USE fast_pool_allocator:\n";
        boost::timer::auto_cpu_timer t1;
        for ( int i = 0; i < MAXLENGTH; ++i )
        {
            vec1.push_back ( i );
            vec1.pop_back();
        }
    }
    {
        cout << "USE STL allocator:\n";
        boost::timer::auto_cpu_timer t2;
        for ( int i = 0; i < MAXLENGTH; ++i )
        {
            vec2.push_back ( i );
            vec2.pop_back();
        }
    }
};

int main()
{
    pool_sample();
    pool_sample_1();
    test_pool_alloc();
    test_fast_pool_alloc();
    system ( "pause" );
}

boost::pool 的實現原理

pool去按照必定的增加規則,從操做系統申請一大塊內存,稱爲block,源碼中用PODptr表示。
這個PODptr結構將block分爲三塊,第一塊是大塊數據區,第二塊只有sizeof(void*) 個字節,即指針大小,保存下一個PODptr的指針,第三塊保存下一PODptr的長度。最後一個PODptr指針爲空。node

PODptr的數據區被simple_segregated_storage格式化爲許多個小塊,稱爲chunk。一個chunk的大小是定義boost::object_pool 時決定的,即 sizeof(T)>sizeof(void )?sizeof(T):sizeof(void)。任意一個chunk未被佔用時,使用其前sizeof(void*)個字節做爲一個指針指向下一個未被佔用的chunk。是的,單向鏈表。而從pool::malloc,就執行單向鏈表的刪除節點操做,每次都返回首個chunk,所以未進行從新申請block前,malloc都是O(1)。 ios

pool::free(ptr)操做就是找到ptr屬於哪一個PODptr,而後把ptr添加到單向鏈表頭。數據結構

pool::ordered_free(ptr)找到ptr屬於哪一個PODptr,而後經過插入排序把ptr添加到單向鏈表。less

部分源碼

/*
該函數是simple_segregated_storage的成員函數。第一次看到一下懵逼了,不知其何用意。難道不就是獲得 *ptr 的功能嗎?!
事實是,對於一個void*是不能dereference的。由於*ptr你將獲得一個void類型,C++不容許void類型。
*/
static void * & nextof(void * const ptr)
{
      return *(static_cast<void **>(ptr));
}

simple_segregated_storage

simple_segregated_storage描述

//segregate會把給的一個sz大小的內存塊,拆分爲每一個partition_sz大小的多個chunk單元,
//每一個chunk的前4字節指向下一個chunk(做爲鏈表的next),而最後一個chunk頭指向end。

template <typename SizeType>
void * simple_segregated_storage<SizeType>::segregate(
    void * const block,
    const size_type sz,
    const size_type partition_sz,
    void * const end)
{
  //找到最後一個chunk
  char * old = static_cast<char *>(block)
      + ((sz - partition_sz) / partition_sz) * partition_sz;

  nextof(old) = end;//把最後一個chunk指向end

  if (old == block)
    return block;//若是這塊內存只有一個chunk就返回
  //格式化其餘的chunk,使每一個chunk的前4字節指向下一個chunk
  for (char * iter = old - partition_sz; iter != block;
      old = iter, iter -= partition_sz)
    nextof(iter) = old;

  nextof(block) = old;

  return block;
}

//添加一個block時,會把這該塊分解成chunk,添加到鏈表的頭部。由於無序,因此複雜度O(1)
void add_block(void * const block,
        const size_type nsz, const size_type npartition_sz)
    {
      first = segregate(block, nsz, npartition_sz, first);
    }
//經過find_prev找到這個內存塊對應的位置,而後添加進去。複雜度O(n)
void add_ordered_block(void * const block,
        const size_type nsz, const size_type npartition_sz)
    {
      void * const loc = find_prev(block);
      if (loc == 0)
        add_block(block, nsz, npartition_sz);
      else
        nextof(loc) = segregate(block, nsz, npartition_sz, nextof(loc));
    }

//這個沒什麼好說的,經過比較地址,找到ptr在當前block中的位置,相似插入排序。
template <typename SizeType>
void * simple_segregated_storage<SizeType>::find_prev(void * const ptr)
{
  if (first == 0 || std::greater<void *>()(first, ptr))
    return 0;

  void * iter = first;
  while (true)
  {
    if (nextof(iter) == 0 || std::greater<void *>()(nextof(iter), ptr))
      return iter;

    iter = nextof(iter);
  }
}
//simple_segregated_storage成員變量。 鏈表頭指針。
void * first;

下段代碼從simple_segregated_storage鏈表中獲取內存:ide

template <typename SizeType>
void * simple_segregated_storage<SizeType>::malloc_n(const size_type n,
    const size_type partition_size)
{
  if(n == 0)
    return 0;
  void * start = &first;
  void * iter;
  do
  {
    if (nextof(start) == 0)
      return 0;
    //try_malloc_n會從start開始(不算start)向後申請n個partition_size大小的chunk,返回最後一個chunk的指針
    iter = try_malloc_n(start, n, partition_size);
  } while (iter == 0);
  //此處返回內存chunk頭
  void * const ret = nextof(start);
  //此處是經典的單向鏈表移除其中一個節點的操做。把該內存的前面chunk頭指向該內存尾部chunk頭指向的內存。即把該部分排除出鏈表。
  nextof(start) = nextof(iter);
  return ret;
}

//start會指向知足條件(連續的n個partition_size大小的chunk內存)的chunk頭部,返回最後一個chunk指針。
template <typename SizeType>
void * simple_segregated_storage<SizeType>::try_malloc_n(
    void * & start, size_type n, const size_type partition_size)
{
  void * iter = nextof(start);
  //start後面的塊是不是連續的n塊partition_size大小的內存
  while (--n != 0)
  {
    void * next = nextof(iter);
    //若是next != static_cast<char *>(iter) + partition_size,說明下一塊chunk被佔用或是到了大塊內存(block)的尾部。
    if (next != static_cast<char *>(iter) + partition_size)
    {
      // next == 0 (end-of-list) or non-contiguous chunk found
      start = iter;
      return 0;
    }
    iter = next;
  }
  return iter;
}

class PODptr

如上圖,類PODptr指示了一個block結構,這個block大小不必定相同,但都由 chunk data+ next ptr + next block size三部分組成。函數

  • chunk data部分被構形成一個simple_segregated_storage,切分爲多個chunk,是一塊連續的內存
  • next ptr 指向下一個block結構,next block size指出了下一個block結構的大小。
  • 也就是說,多個PODptr結構組成一個鏈表,而PODptr內部由simple_segregated_storage分紅一個順序表。
  • PODptr的大小不固定,增加方式見void * pool<UserAllocator>::malloc_need_resize().
  • 初始化的每一個chunk都指向下一個chunk

class pool

//pool 從simple_segregated_storage派生
template <typename UserAllocator>
class pool: protected simple_segregated_storage < typename UserAllocator::size_type >;

//返回父類指針以便調用父類函數,其實就是類型轉換
simple_segregated_storage<size_type> & store()
{ //! \returns pointer to store.
      return *this;
}

在調用pool::malloc只申請一個chunk時,若是有足夠空間,使用父類指針調用malloc返回內存,不然就從新申請一個大block。代碼簡單,就不貼了。post

下面代碼是申請n個連續的chunk。若是沒有連續的n個內存就須要從新分配內存了。分配好的內存,經過add_ordered_block添加到chunks的有序鏈表,並經過地址大小把剛申請的block放到PODptr鏈表的排序位置。this

template <typename UserAllocator>
void * pool<UserAllocator>::ordered_malloc(const size_type n)
{ //! Gets address of a chunk n, allocating new memory if not already available.
  //! \returns Address of chunk n if allocated ok.
  //! \returns 0 if not enough memory for n chunks.

  const size_type partition_size = alloc_size();
  const size_type total_req_size = n * requested_size;
  const size_type num_chunks = total_req_size / partition_size +
      ((total_req_size % partition_size) ? true : false);

  void * ret = store().malloc_n(num_chunks, partition_size);

#ifdef BOOST_POOL_INSTRUMENT
  std::cout << "Allocating " << n << " chunks from pool of size " << partition_size << std::endl;
#endif
  if ((ret != 0) || (n == 0))
    return ret;

#ifdef BOOST_POOL_INSTRUMENT
  std::cout << "Cache miss, allocating another chunk...\n";
#endif

  // Not enough memory in our storages; make a new storage,
  BOOST_USING_STD_MAX();

  //計算下次申請內存的大小,基本就是乘以2.integer::static_lcm是求最小公倍數。
  next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
  size_type POD_size = static_cast<size_type>(next_size * partition_size +
      integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
  char * ptr = (UserAllocator::malloc)(POD_size);
  if (ptr == 0)
  {
     if(num_chunks < next_size)
     {
        // Try again with just enough memory to do the job, or at least whatever we
        // allocated last time:
        next_size >>= 1;
        next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
        POD_size = static_cast<size_type>(next_size * partition_size +
            integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
        ptr = (UserAllocator::malloc)(POD_size);
     }
     if(ptr == 0)
       return 0;
  }
  const details::PODptr<size_type> node(ptr, POD_size);

  // Split up block so we can use what wasn't requested.
  if (next_size > num_chunks)
    store().add_ordered_block(node.begin() + num_chunks * partition_size,
        node.element_size() - num_chunks * partition_size, partition_size);

  BOOST_USING_STD_MIN();
  if(!max_size)
    next_size <<= 1;
  else if( next_size*partition_size/requested_size < max_size)
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);

  //  insert it into the list,
  //   handle border case.
  //對大塊block進行排序
  if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
  {
    node.next(list);
    list = node;
  }
  else
  {
    details::PODptr<size_type> prev = list;

    while (true)
    {
      // if we're about to hit the end, or if we've found where "node" goes.
      if (prev.next_ptr() == 0
          || std::greater<void *>()(prev.next_ptr(), node.begin()))
        break;

      prev = prev.next();
    }

    node.next(prev.next());
    prev.next(node);
  }

  //  and return it.
  return node.begin();
}

下面代碼是釋放未被佔用的塊。(一個block任何一個chunk被佔用就不會釋放)spa

template <typename UserAllocator>
bool pool<UserAllocator>::release_memory()
{ //! pool must be ordered. Frees every memory block that doesn't have any allocated chunks.
  //! \returns true if at least one memory block was freed.

  // ret is the return value: it will be set to true when we actually call
  //  UserAllocator::free(..)
  bool ret = false;

  // This is a current & previous iterator pair over the memory block list
  details::PODptr<size_type> ptr = list;
  details::PODptr<size_type> prev;

  // This is a current & previous iterator pair over the free memory chunk list
  //  Note that "prev_free" in this case does NOT point to the previous memory
  //  chunk in the free list, but rather the last free memory chunk before the
  //  current block.
  void * free_p = this->first;
  void * prev_free_p = 0;

  const size_type partition_size = alloc_size();

  // Search through all the all the allocated memory blocks
  while (ptr.valid())
  {
    // At this point:
    //  ptr points to a valid memory block
    //  free_p points to either:
    //    0 if there are no more free chunks
    //    the first free chunk in this or some next memory block
    //  prev_free_p points to either:
    //    the last free chunk in some previous memory block
    //    0 if there is no such free chunk
    //  prev is either:
    //    the PODptr whose next() is ptr
    //    !valid() if there is no such PODptr

    // If there are no more free memory chunks, then every remaining
    //  block is allocated out to its fullest capacity, and we can't
    //  release any more memory
    if (free_p == 0)
      break;

    // We have to check all the chunks.  If they are *all* free (i.e., present
    //  in the free list), then we can free the block.
    bool all_chunks_free = true;

    // Iterate 'i' through all chunks in the memory block
    // if free starts in the memory block, be careful to keep it there
    void * saved_free = free_p;
    for (char * i = ptr.begin(); i != ptr.end(); i += partition_size)
    {
      // If this chunk is not free
      if (i != free_p)
      {
        // We won't be able to free this block
        all_chunks_free = false;

        // free_p might have travelled outside ptr
        free_p = saved_free;
        // Abort searching the chunks; we won't be able to free this
        //  block because a chunk is not free.
        break;
      }

      // We do not increment prev_free_p because we are in the same block
      free_p = nextof(free_p);
    }

    // post: if the memory block has any chunks, free_p points to one of them
    // otherwise, our assertions above are still valid

    const details::PODptr<size_type> next = ptr.next();

    if (!all_chunks_free)
    {
      if (is_from(free_p, ptr.begin(), ptr.element_size()))
      {
        std::less<void *> lt;
        void * const end = ptr.end();
        do
        {
          prev_free_p = free_p;
          free_p = nextof(free_p);
        } while (free_p && lt(free_p, end));
      }
      // This invariant is now restored:
      //     free_p points to the first free chunk in some next memory block, or
      //       0 if there is no such chunk.
      //     prev_free_p points to the last free chunk in this memory block.

      // We are just about to advance ptr.  Maintain the invariant:
      // prev is the PODptr whose next() is ptr, or !valid()
      // if there is no such PODptr
      prev = ptr;
    }
    else
    {
      // All chunks from this block are free

      // Remove block from list
      if (prev.valid())
        prev.next(next);
      else
        list = next;

      // Remove all entries in the free list from this block
      //關鍵點在這裏,釋放了一個block以後,會把上一個chunk頭修改。
      if (prev_free_p != 0)
        nextof(prev_free_p) = free_p;
      else
        this->first = free_p;

      // And release memory
      (UserAllocator::free)(ptr.begin());
      ret = true;
    }

    // Increment ptr
    ptr = next;
  }

  next_size = start_size;
  return ret;
}

pool總結

pool的實現基本就是利用simple_segregated_storage內部實現的維護chunk的鏈表來實現內存管理的。simple_segregated_storage能夠說是pool的核心。pool內部一共維護了兩個鏈表:操作系統

  • simple_segregated_storage內部的chunk鏈表。分配單個chunk時,直接從這個鏈表拿一個chunk,複雜度O(1)。
  • pool內部有個成員變量details::PODptr<size_type> list;用來維護一個大塊內存block的鏈表。能夠知道,一個block內部是連續的,但block之間能夠認爲是不連續的內存。這個鏈表至關於一個內存地址索引,主要是爲了提升查找效率:對於有序排列的內存池,歸還內存時,用來快速判斷是屬於哪一個塊的。若是沒有這個鏈表,就須要挨個chunk去判斷地址大小。

class object_pool

class object_pool: protected pool<UserAllocator>;

object_pool繼承自pool,但和pool的區別是,pool用於申請固定大小的內存,而object_pool用於申請固定類型的內存,並會調用構造函數和析構函數。主要的函數就兩個:

調用構造函數,用到了一個placement new的方式,老生常談。

惟一須要注意的是construct和destroy調用的malloc和free,都是調用的 ordered_mallocordered_free

elem``ent_type * construct(Arg1&, ... ArgN&){...}
element_type * construct()
{
  element_type * const ret = (malloc)();
  if (ret == 0)
    return ret;
  try { new (ret) element_type(); }
  catch (...) { (free)(ret); throw; }
  return ret;
}
element_type * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
{ 
      return static_cast<element_type *>(store().ordered_malloc());
}

destroy顯式調用析構函數去析構,而後把內存還給鏈表維護。

void destroy(element_type * const chunk)
{
  chunk->~T();
  (free)(chunk);
}
void free BOOST_PREVENT_MACRO_SUBSTITUTION(element_type * const chunk)
{
  store().ordered_free(chunk);
}

class singleton_pool

單例內存池的實現,值得注意的有以下幾點:

  • 單線程使用單例時(保證無同步問題),能夠經過定義宏BOOST_POOL_NO_MT來取消同步的損耗。
#if !defined(BOOST_HAS_THREADS) || defined(BOOST_NO_MT) || defined(BOOST_POOL_NO_MT)                                   
  typedef null_mutex default_mutex;
  • 單例內存池的單例實現以下,經過內部類object_creator調用private函數get_pool(),經過create_object.do_nothing();來保證在main以前實例化靜態對象static object_creator create_object;
class singleton_pool
{
public:
    ...
private:
   typedef boost::aligned_storage<sizeof(pool_type), boost::alignment_of<pool_type>::value> storage_type;
   static storage_type storage;

   static pool_type& get_pool()
   {
      static bool f = false;
      if(!f)
      {
         // This code *must* be called before main() starts,
         // and when only one thread is executing.
         f = true;
         new (&storage) pool_type;
      }

      // The following line does nothing else than force the instantiation
      //  of singleton<T>::create_object, whose constructor is
      //  called before main() begins.
      create_object.do_nothing();

      return *static_cast<pool_type*>(static_cast<void*>(&storage));
   }

   struct object_creator
   {
      object_creator()
      {  // This constructor does nothing more than ensure that instance()
         //  is called before main() begins, thus creating the static
         //  T object before multithreading race issues can come up.
         singleton_pool<Tag, RequestedSize, UserAllocator, Mutex, NextSize, MaxSize>::get_pool();
      }
      inline void do_nothing() const
      {
      }
   };
   static object_creator create_object;
};

總結

  • 適用範圍:頻繁申請釋放相同大小的內存,如須要頻繁的建立同一個類的對象。
  • 優勢:能夠防止內存碎片、極快,避免頻繁申請內存的調用.

boost::pool 的源代碼一共就幾個文件,簡潔明瞭,讀起來也不很難。因爲代碼時間遠早於現代C++(C++11以後)成型,兼容編譯器的代碼建議忽略。由於重要的是其設計思想:如何經過自構兩個鏈表來提高內存管理效率的。

數據結構很簡單。適用場景比較狹窄,跟GC無法比。

相關文章
相關標籤/搜索