關於高併發下kafka producer send異步發送耗時問題的分析

最近開發網關服務的過程中,須要用到kafka轉發消息與保存日誌,在進行壓測的過程當中因爲是多線程併發操做kafka producer 進行異步send,發現send耗時有時會達到幾十毫秒的阻塞,很大程度上上影響了併發的性能,而在後續的測試中發現單線程發送反而比多線程發送效率高出幾倍。因此就對kafka API send 的源碼進行了一下跟蹤和分析,在此總結記錄一下。spring

首先看springboot下 kafka producer 的使用api

在config中進行配置,向IOC容器中注入DefaultKafkaProducerFactory生產者工廠的實例安全

    @Bean
    public ProducerFactory<Object, Object> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

建立producerspringboot

this.producer = producerFactory.createProducer();

你們都知道springboot下IOC容器管理的實例默認都是單例模式;而DefaultKafkaProducerFactory自己也是一個單例工廠多線程

    @Override
    public Producer<K, V> createProducer() {
        if (this.transactionIdPrefix != null) {
            return createTransactionalProducer();
        }
        if (this.producer == null) {
            synchronized (this) {
                if (this.producer == null) {
                    this.producer = new CloseSafeProducer<K, V>(createKafkaProducer());
                }
            }
        }
        return this.producer;
    }

咱們建立的producer也是個單例。併發

接下來就是具體的發送,用過kafka的小夥伴都知道producer.send是個異步操做,會返回一個Future<RecordMetadata> 類型的結果。那麼爲何單線程和多線程send效率會較大的差距呢,咱們進入KafkaProducer內部看下producer.send的具體源碼實現來找下答案app

private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
        TopicPartition tp = null;
        try {
            //保證主題的元數據可用
            ClusterAndWaitTime clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs);
            long remainingWaitMs = Math.max(0, maxBlockTimeMs - clusterAndWaitTime.waitedOnMetadataMs);
            Cluster cluster = clusterAndWaitTime.cluster;
            byte[] serializedKey;
            try {
                //序列化key
                serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key());
            } catch (ClassCastException cce) {
                throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() +
                        " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() +
                        " specified in key.serializer", cce);
            }
            byte[] serializedValue;
            try {
                //序列化Value
                serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value());
            } catch (ClassCastException cce) {
                throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() +
                        " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() +
                        " specified in value.serializer", cce);
            }
            //計算出具體的partition 
            int partition = partition(record, serializedKey, serializedValue, cluster);
            tp = new TopicPartition(record.topic(), partition);

            setReadOnly(record.headers());
            Header[] headers = record.headers().toArray();

            int serializedSize = AbstractRecords.estimateSizeInBytesUpperBound(apiVersions.maxUsableProduceMagic(),
                    compressionType, serializedKey, serializedValue, headers);
            ensureValidRecordSize(serializedSize);
            long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp();
            log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition);
            // producer callback will make sure to call both 'callback' and interceptor callback
            Callback interceptCallback = new InterceptorCallback<>(callback, this.interceptors, tp);

            if (transactionManager != null && transactionManager.isTransactional())
                transactionManager.maybeAddPartitionToTransaction(tp);
            //向隊列容器中添加數據
            RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
                    serializedValue, headers, interceptCallback, remainingWaitMs);
            if (result.batchIsFull || result.newBatchCreated) {
                log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
                this.sender.wakeup();
            }
            return result.future;
            // handling exceptions and record the errors;
            // for API exceptions return them in the future,
            // for other exceptions throw directly
        } catch (ApiException e) {
            log.debug("Exception occurred during message send:", e);
            if (callback != null)
                callback.onCompletion(null, e);
            this.errors.record();
            this.interceptors.onSendError(record, tp, e);
            return new FutureFailure(e);
        } catch (InterruptedException e) {
            this.errors.record();
            this.interceptors.onSendError(record, tp, e);
            throw new InterruptException(e);
        } catch (BufferExhaustedException e) {
            this.errors.record();
            this.metrics.sensor("buffer-exhausted-records").record();
            this.interceptors.onSendError(record, tp, e);
            throw e;
        } catch (KafkaException e) {
            this.errors.record();
            this.interceptors.onSendError(record, tp, e);
            throw e;
        } catch (Exception e) {
            // we notify interceptor about all exceptions, since onSend is called before anything else in this method
            this.interceptors.onSendError(record, tp, e);
            throw e;
        }
    }

這裏除了前面作的一些序列化操做和判斷,最關鍵的就是向隊列容器中執行添加數據操做負載均衡

RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
                    serializedValue, headers, interceptCallback, remainingWaitMs);

accumulator是RecordAccumulator這個類的一個實例,RecordAccumulator類是一個隊列容器類;它的內部維護了一個ConcurrentMap,每個TopicPartition都對應一個專屬的消息隊列。異步

private final ConcurrentMap<TopicPartition, Deque<ProducerBatch>> batches;

咱們進入accumulator.append內部看下具體的實現jvm

public RecordAppendResult append(TopicPartition tp,
                                     long timestamp,
                                     byte[] key,
                                     byte[] value,
                                     Header[] headers,
                                     Callback callback,
                                     long maxTimeToBlock) throws InterruptedException {
        // We keep track of the number of appending thread to make sure we do not miss batches in
        // abortIncompleteBatches().
        appendsInProgress.incrementAndGet();
        ByteBuffer buffer = null;
        if (headers == null) headers = Record.EMPTY_HEADERS;
        try {
            //根據TopicPartition拿到對應的批處理隊列 
            Deque<ProducerBatch> dq = getOrCreateDeque(tp);
            //同步隊列,保證線程安全
            synchronized (dq) {
                if (closed)
                    throw new IllegalStateException("Cannot send after the producer is closed.");
                //把序列化後的數據放入隊列,並返回結果
                RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
                if (appendResult != null)
                    return appendResult;
            }

            // we don't have an in-progress record batch try to allocate a new batch
            byte maxUsableMagic = apiVersions.maxUsableProduceMagic();
            int size = Math.max(this.batchSize, AbstractRecords.estimateSizeInBytesUpperBound(maxUsableMagic, compression, key, value, headers));
            log.trace("Allocating a new {} byte message buffer for topic {} partition {}", size, tp.topic(), tp.partition());
            buffer = free.allocate(size, maxTimeToBlock);
            synchronized (dq) {
                // Need to check if producer is closed again after grabbing the dequeue lock.
                if (closed)
                    throw new IllegalStateException("Cannot send after the producer is closed.");

                RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
                if (appendResult != null) {
                    // Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often...
                    return appendResult;
                }

                MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic);
                ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds());
                FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds()));

                dq.addLast(batch);
                incomplete.add(batch);

                // Don't deallocate this buffer in the finally block as it's being used in the record batch
                buffer = null;

                return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true);
            }
        } finally {
            if (buffer != null)
                free.deallocate(buffer);
            appendsInProgress.decrementAndGet();
        }
    }
在getOrCreateDeque中咱們根據TopicPartition從ConcurrentMap獲取對應隊列,沒有的話就初始化一個。
    private Deque<ProducerBatch> getOrCreateDeque(TopicPartition tp) {
        Deque<ProducerBatch> d = this.batches.get(tp);
        if (d != null)
            return d;
        d = new ArrayDeque<>();
        Deque<ProducerBatch> previous = this.batches.putIfAbsent(tp, d);
        if (previous == null)
            return d;
        else
            return previous;
    }

更關鍵的是爲了保證併發時的線程安全,執行 RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq)時,Deque<ProducerBatch>必然須要同步處理。 

synchronized (dq) {
                if (closed)
                    throw new IllegalStateException("Cannot send after the producer is closed.");
                RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
                if (appendResult != null)
                    return appendResult;
            }

在這裏咱們能夠看出,多線程高併發狀況下,針對dq的操做會存在比較大的資源競爭,雖然是基於內存的操做,每一個線程持有鎖的時間極短,但相比單線程狀況,高併發狀況下線程開闢較多,鎖競爭和cpu上下文切換都比較頻繁,會形成必定的性能損耗,產生阻塞耗時。

分析到這裏你就會發現,其實KafkaProducer這個異步發送是創建在生產者和消費者模式上的,send的真正操做並非直接異步發送,而是把數據放在一箇中間隊列中。那麼既然有生產者在往內存隊列中放入數據,那麼必然會有一個專有的線程負責把這些數據真正發送出去。咱們經過監控jvm線程信息能夠看到,KafkaProducer建立後確實會啓動一個守護線程用於消息的發送。

 

 

 

 

 

 

 

 

 

OK,咱們再回到 KafkaProducer中,會看到裏面有這樣兩個對象,Sender就是kafka發送數據的後臺線程

    private final Sender sender;
    private final Thread ioThread;

在KafkaProducer的構造函數中會啓動Sender線程

            this.sender = new Sender(logContext,
                    client,
                    this.metadata,
                    this.accumulator,
                    maxInflightRequests == 1,
                    config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG),
                    acks,
                    retries,
                    metricsRegistry.senderMetrics,
                    Time.SYSTEM,
                    this.requestTimeoutMs,
                    config.getLong(ProducerConfig.RETRY_BACKOFF_MS_CONFIG),
                    this.transactionManager,
                    apiVersions);
            String ioThreadName = NETWORK_THREAD_PREFIX + " | " + clientId;
            this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
            this.ioThread.start();

進入Sender內部能夠看到這個線程的做用就是一直輪詢發送數據。

    public void run() {
        log.debug("Starting Kafka producer I/O thread.");

        // main loop, runs until close is called
        while (running) {
            try {
                run(time.milliseconds());
            } catch (Exception e) {
                log.error("Uncaught error in kafka producer I/O thread: ", e);
            }
        }

        log.debug("Beginning shutdown of Kafka producer I/O thread, sending remaining records.");

        // okay we stopped accepting requests but there may still be
        // requests in the accumulator or waiting for acknowledgment,
        // wait until these are completed.
        while (!forceClose && (this.accumulator.hasUndrained() || this.client.inFlightRequestCount() > 0)) {
            try {
                run(time.milliseconds());
            } catch (Exception e) {
                log.error("Uncaught error in kafka producer I/O thread: ", e);
            }
        }
        if (forceClose) {
            // We need to fail all the incomplete batches and wake up the threads waiting on
            // the futures.
            log.debug("Aborting incomplete batches due to forced shutdown");
            this.accumulator.abortIncompleteBatches();
        }
        try {
            this.client.close();
        } catch (Exception e) {
            log.error("Failed to close network client", e);
        }

        log.debug("Shutdown of Kafka producer I/O thread has completed.");
    }

    /**
     * Run a single iteration of sending
     *
     * @param now The current POSIX time in milliseconds
     */
    void run(long now) {
        if (transactionManager != null) {
            try {
                if (transactionManager.shouldResetProducerStateAfterResolvingSequences())
                    // Check if the previous run expired batches which requires a reset of the producer state.
                    transactionManager.resetProducerId();

                if (!transactionManager.isTransactional()) {
                    // this is an idempotent producer, so make sure we have a producer id
                    maybeWaitForProducerId();
                } else if (transactionManager.hasUnresolvedSequences() && !transactionManager.hasFatalError()) {
                    transactionManager.transitionToFatalError(new KafkaException("The client hasn't received acknowledgment for " +
                            "some previously sent messages and can no longer retry them. It isn't safe to continue."));
                } else if (transactionManager.hasInFlightTransactionalRequest() || maybeSendTransactionalRequest(now)) {
                    // as long as there are outstanding transactional requests, we simply wait for them to return
                    client.poll(retryBackoffMs, now);
                    return;
                }

                // do not continue sending if the transaction manager is in a failed state or if there
                // is no producer id (for the idempotent case).
                if (transactionManager.hasFatalError() || !transactionManager.hasProducerId()) {
                    RuntimeException lastError = transactionManager.lastError();
                    if (lastError != null)
                        maybeAbortBatches(lastError);
                    client.poll(retryBackoffMs, now);
                    return;
                } else if (transactionManager.hasAbortableError()) {
                    accumulator.abortUndrainedBatches(transactionManager.lastError());
                }
            } catch (AuthenticationException e) {
                // This is already logged as error, but propagated here to perform any clean ups.
                log.trace("Authentication exception while processing transactional request: {}", e);
                transactionManager.authenticationFailed(e);
            }
        }

        long pollTimeout = sendProducerData(now);
        client.poll(pollTimeout, now);
    }

經過上面的分析咱們能夠看出producer.send操做自己實際上是個基於內存的存儲操做,耗時幾乎能夠忽略不計,但因爲高併發狀況下,線程同步會有必定的性能損耗,固然這個損耗在通常的應用場景下幾乎是能夠忽略不計的,但若是是數據量比較大,高併發的場景下會比較明顯。

針對上面的問題分析,這裏說下我我的的一些總結:

一、首先避免多線程操做producer發送數據,你能夠採用生產者消費者模式把producer.send從你的多線程操做中解耦出來,維護一個你要發送的消息隊列,單獨開闢一個線程操做;

二、可能有的小夥伴會問,那麼多建立幾個producer的實例或者維護一個producer池能夠嗎,我本來也是這個想法,只是在測試中發現效果也不是很理想,我估計是因爲建立producer實例過多,致使線程數量也跟着增長,自己的業務線程再加上kafka的線程,線程上下文切換比較頻繁,CPU資源壓力比較大,效率也不如單線程操做;

三、這個問題其實真是針對API操做來說的,send操做並非真正的數據發送,真正的數據發送由守護線程進行;按照kafka自己的設計思想,若是操做自己就成爲了你性能的瓶頸,你應該考慮的是集羣部署,負載均衡;

四、無鎖纔是真正的高性能;

相關文章
相關標籤/搜索