【Leetcode】Search in Rotated Sorted Array II

 Follow up for "Search in Rotated Sorted Array":算法

What if duplicates are allowed?ide

Would this affect the run-time complexity? How and why?this

Write a function to determine if a given target is in the array.blog

 

出現相等元素以後會出現一種特殊退化的狀況,即中間元素等於start,end的元素,這樣沒法判斷左邊或者右邊是否出現突增,增減,因此這種狀況下必須遞歸兩邊,算法退化成線性比較。遞歸

1st (3 tries)get

class Solution 
{
public:
    bool search(int A[], int n, int target) 
    {
        if(A[0] < A[n-1])
            return binary_search(A,0,n-1,target);
        else
            return ordinary_search(A,0,n-1,target);
    }
    bool binary_search(int A[],int start,int end,int target)
    {
        if(start > end)
            return false;
        int mid = (start + end)/2;
        if(A[mid] == target)
            return true;
        if(A[mid] > target)
        {
            return binary_search(A,start,mid-1,target);
        }
        else
        {
            return binary_search(A,mid+1,end,target);
        }
    }
    bool ordinary_search(int A[],int start,int end,int target)
    {
        if(start > end)
            return false;
        int mid = (start + end)/2;
        if(A[mid] == target)
            return true;
        /**this is new**//**test case 1,3,1,1,1 or 1,1,1,3,1  沒法判定3的具體位置**/
        if(A[start] == A[mid] && A[mid] == A[end])
        {
            return ordinary_search(A,start,mid-1,target)||ordinary_search(A,mid+1,end,target);
        }
        else if(A[start] <= A[mid])
        {
            if(target <= A[mid] && target >= A[start])
            {
                return binary_search(A,start,mid-1,target);
            }
            else
            {
                return ordinary_search(A,mid+1,end,target);
            }
        }
        else
        {
            if(target >= A[mid] && target <= A[end])
            {
                return binary_search(A,mid+1,end,target);
            }
            else
            {
                return ordinary_search(A,start,mid-1,target);
            }
        }
    }
};

  

2nd (3 tries)it

class Solution {
public:
    bool search(int A[], int n, int target) {
        //if exists equal so don't know whether left or right is available???
        return search(A,0,n-1,target);
    }
    bool search(int A[], int start, int end, int target) {
        if(start > end)
            return false;
        int mid = start + (end - start)/2;
        if( A[mid] == target ) 
            return true;
        else if( A[mid] > target ) {
            //two side???
            if( A[start] == A[end] ) {
                return search(A,start,mid-1,target) || search(A,mid+1,end,target);
            }
            else {
                //no rotate,sorted array!!!
                if( A[start] < A[end] ) {
                    return bsearch(A,start,end,target);
                }
                // A[start] > A[end]!!!
                else {
                    if( A[mid] < A[start] ) {
                        return search(A,start,mid-1,target);
                    }
                    //A[mid] >= A[start]
                    else {
                        if(target >= A[start]) {
                            return bsearch(A,start,mid-1,target);
                        }
                        else {
                            return search(A,mid+1,end,target);
                        }
                    }
                }
            }
        }
        else {
            if( A[start] == A[end] ) {
                return search(A,start,mid-1,target) || search(A,mid+1,end,target);
            }
            else {
                //no rotate,sorted array!!!
                if( A[start] < A[end] ) {
                    return bsearch(A,start,end,target);
                }
                // A[start] > A[end]!!!
                else {
                    if( A[mid] < A[start] ) {
                        if(target <= A[end]) {
                            return bsearch(A,mid+1,end,target);
                        }
                        else {
                            return search(A,start,mid-1,target);
                        }
                    }
                    //A[mid] >= A[start]
                    else {
                        return search(A,mid+1,end,target);
                    }
                }
            }
        }
    }
    //binary search!!!
    bool bsearch(int A[], int start, int end, int target) {
        while(start <= end) {
            int mid = start + (end-start)/2;
            if(A[mid] == target)
                return true;
            else if(A[mid] > target) {
                end = mid-1;
            }
            else {
                start = mid+1;
            }
        }
        return false;
    }
};
相關文章
相關標籤/搜索